Iniciar sesión

Many proteins’ biological role depends on their interactions with their ligands, small molecules that bind to specific locations on the protein known as ligand-binding sites. Ligand-binding sites are often conserved among homologous proteins as these sites are critical for protein function.

Binding sites are often located in large pockets, and if their location on a protein’s surface is unknown, it can be predicted using various approaches. The energetic method computationally analyses the interaction energy of different amino acid residues with the ligand and predicts the ones where binding energy is at a minimum to be potential binding sites. However, examining conserved sequences is often used in conjunction with other methodologies to enhance this prediction further. Structurally conserved residues can be used to distinguish between binding sites and exposed protein surfaces. The amino acids, Trp, Phe, and Met, are highly conserved in binding sites, and no such conservation is observed in the case of exposed protein surfaces.

Various computational tools can predict binding sites using a mix of structural, energetic, and conserved binding site methodologies. ConCavity is a tool that can be used to predict 3D ligand-binding pockets and individual ligand-binding residues. The algorithm used directly integrates evolutionary sequence conservation estimates with structure-based prediction. Another tool, MONKEY, is used to identify conserved transcription-factor binding sites in multispecies alignments. It employs factor specificity and binding-site evolution models to compute the likelihood that putative sites are conserved and assign statistical significance to each prediction.

Tags
Conserved Binding SitesLigand Binding SitesAmino Acid ClustersDomainsInteractionFunctionEvolutionMutationsNatural SelectionNuclear ProteinsFF DomainsPhenylalanine Amino AcidsHydrophobic CoreRNA Polymerase IIEvolutionary TracingConserved Regions3D ModelsProtein StructuresBinding SitesEvolutionary Relationships

Del capítulo 4:

article

Now Playing

4.3 : Conserved Binding Sites

Protein Function

4.1K Vistas

article

4.1 : Sitios de unión de ligandos

Protein Function

12.5K Vistas

article

4.2 : Interfaces proteína-proteína

Protein Function

12.4K Vistas

article

4.4 : La constante de unión de equilibrio y la fuerza de unión

Protein Function

12.5K Vistas

article

4.5 : Cofactores y coenzimas

Protein Function

7.1K Vistas

article

4.6 : Regulación alostérica

Protein Function

13.8K Vistas

article

4.7 : Unión y enlace de ligandos

Protein Function

4.7K Vistas

article

4.8 : Transiciones alostéricas cooperativas

Protein Function

7.8K Vistas

article

4.9 : Fosforilación

Protein Function

5.7K Vistas

article

4.10 : Proteínas quinasas y fosfatasas

Protein Function

12.7K Vistas

article

4.11 : GTPasas y su regulación

Protein Function

8.0K Vistas

article

4.12 : Reguladores de proteínas unidos covalentemente

Protein Function

6.6K Vistas

article

4.13 : Complejos proteicos con partes intercambiables

Protein Function

2.5K Vistas

article

4.14 : Funciones mecánicas de las proteínas

Protein Function

4.8K Vistas

article

4.15 : Función estructural de las proteínas

Protein Function

27.0K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados