JoVE Logo

Iniciar sesión

Unlike eukaryotes, bacteria use a single RNA Polymerase (RNAP) to transcribe all genes. The different subunits of bacterial RNAPhave distinct functions. The multisubunit structure of the bacterial RNAP helps the enzyme to maintain catalytic function, facilitate assembly, interact with DNA and RNA, and self-regulate its activity.

In most genes, the transcription site is a single base present upstream of the coding sequence. Though RNAP is a catalytically efficient enzyme, it does not recognize DNA sequences specifically. To help the RNAP recognize DNA sequences with high affinity, specialized proteins called transcription factors bind to particular regions of DNA to initiate transcription. In bacteria, the sigma factor helps the RNAP recognize the promoter sequence and secures its binding at the transcription start site. Bacteria contain a variety of sigma factors that associate with different promoter sequences. Such different sigma factors bind to the cellular pool of RNAPs to express different genes, depending on the cellular requirement.

Other prokaryotic transcription factors allow the cell to turn transcription of certain genes on or off in response to changes in environmental or cellular conditions. Depending on the number of genes targeted, these transcription factors can control gene expression locally or globally. Some transcription factors use their signal-sensing domains to sense the change and modulate the transcription rate by controlling RNAP binding on the template DNA. Thus, even with a single RNAP enzyme, bacteria can use different transcription factors to control which gene to express and when.

Tags

Bacterial RNA PolymeraseTranscriptionMRNARibosomeProteinsRNA Polymerase Core EnzymeAlpha SubunitsBeta SubunitsOmega SubunitSigma FactorPromoter SequenceOpen promoter ComplexRNA TranscriptNucleotidesGene Transcribed

Del capítulo 8:

article

Now Playing

8.4 : Bacterial RNA Polymerase

Transcripción: De ADN a ARN

28.0K Vistas

article

8.1 : ¿Qué es la expresión génica?

Transcripción: De ADN a ARN

27.9K Vistas

article

8.2 : Estructura del ARN

Transcripción: De ADN a ARN

24.9K Vistas

article

8.3 : Estabilidad del ARN

Transcripción: De ADN a ARN

10.4K Vistas

article

8.5 : Tipos de ARN

Transcripción: De ADN a ARN

24.8K Vistas

article

8.6 : Transcripción

Transcripción: De ADN a ARN

36.6K Vistas

article

8.7 : Factores de transcripción

Transcripción: De ADN a ARN

20.0K Vistas

article

8.8 : ARN polimerasas eucariotas

Transcripción: De ADN a ARN

22.9K Vistas

article

8.9 : Proteínas accesorias de la ARN polimerasa II

Transcripción: De ADN a ARN

9.0K Vistas

article

8.10 : Factores de elongación de la transcripción

Transcripción: De ADN a ARN

10.6K Vistas

article

8.11 : Procesamiento de pre-ARNm

Transcripción: De ADN a ARN

25.7K Vistas

article

8.12 : Empalme de ARN

Transcripción: De ADN a ARN

17.0K Vistas

article

8.13 : La estructura de la cromatina regula el procesamiento de pre-ARNm

Transcripción: De ADN a ARN

6.8K Vistas

article

8.14 : Exportación nuclear de ARNm

Transcripción: De ADN a ARN

7.5K Vistas

article

8.15 : Síntesis de ARN ribosómico

Transcripción: De ADN a ARN

13.0K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados