Iniciar sesión

The process of surrounding a solute with solvent is called solvation. It involves evenly distributing the solute within the solvent. The rule of thumb for determining a solvent for a given compound is that like dissolves like. A good solvent has molecular characteristics similar to those of the compound to be dissolved. For example, polar solutions dissolve polar solutes, and apolar solvents dissolve apolar solutes. A polar solvent is a solvent that has a high dielectric constant (ϵ ≥ 15); an apolar solvent is one with a low dielectric constant. The dielectric constant is defined by the electrostatic law, which gives the interaction energy E between two ions with respective charges q1 and q2 separated by a distance r. A polar solvent effectively separates or shields ions from one another. Therefore, the tendency of oppositely charged ions to associate is less in a polar solvent than it is in an apolar solvent.

In the case of a hydrocarbon and water, one is polar (water), and the other is apolar (hydrocarbon). On the introduction of hydrocarbon molecules in water, the water molecules along the hydrocarbon–water interface form a shell-like arrangement called the solvent shell around each hydrocarbon molecule. The water within these shell-like arrangements is more ordered and has lower entropy compared to the water in the solvent. Since any system in nature tries to achieve a state of maximum entropy, the system tries to minimize the interactions between hydrocarbon and water, resulting in the formation of separate hydrocarbon and water layers. This entropy-driven separation between hydrocarbon and water is termed the hydrophobic effect.

Since entropy is the driving factor of the insolubility of hydrocarbons in water, the system's temperature also influences the process, for example, in gas hydrates or clathrates, one of the largest reserves of natural gas. Gas hydrates are crystalline solid forms of water and gas. They form when methane and water freeze under high pressures and low temperatures. The hydrocarbon molecules are enclosed within stable cages of ice, which has relatively large open spaces within its crystal structure. The hydrocarbon molecules fit within these holes, making it possible to predict the maximum size of the hydrocarbon molecules that can form clathrates.

Tags
EntropySolvationSoluteSolventLike Dissolves LikePolar SolventApolar SolventDielectric ConstantInteraction EnergyHydrocarbonWaterSolvent Shell

Del capítulo 2:

article

Now Playing

2.4 : Entropy and Solvation

Termodinámica y cinética química

6.9K Vistas

article

2.1 : Reacciones Químicas

Termodinámica y cinética química

9.6K Vistas

article

2.2 : Entalpía y Calor de Reacción

Termodinámica y cinética química

8.0K Vistas

article

2.3 : Energética de la formación de soluciones

Termodinámica y cinética química

6.6K Vistas

article

2.5 : Energía libre de Gibbs y Favorabilidad termodinámica

Termodinámica y cinética química

6.4K Vistas

article

2.6 : Equilibrio químico y de solubilidad

Termodinámica y cinética química

4.0K Vistas

article

2.7 : Ley de velocidad y Orden de reacción

Termodinámica y cinética química

9.0K Vistas

article

2.8 : Efecto del cambio de temperatura en la velocidad de la reacción

Termodinámica y cinética química

3.9K Vistas

article

2.9 : Reacciones de múltiples pasos

Termodinámica y cinética química

7.1K Vistas

article

2.10 : Energía de disociación de enlace y energía de activación

Termodinámica y cinética química

8.0K Vistas

article

2.11 : Diagramas de energía, Estados de transición e Intermediarios

Termodinámica y cinética química

15.2K Vistas

article

2.12 : Predicción del rendimiento de una reacción

Termodinámica y cinética química

7.6K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados