JoVE Logo

Iniciar sesión

4.9 : Stereoisomerism of Cyclic Compounds

In this lesson, we delve into the role of ring conformation and its stability, which determines the spatial arrangement and, consequently, the molecular symmetry and stereoisomerism of cyclic compounds. 1,2-Dimethylcyclohexane is used as a case study to evaluate the possible number of stereoisomers. Here, given the multiple (n = 2) chiral centers, there are 2n = 4 possible configurations that lack a plane of symmetry, as the ring skeleton exists in a non-planar chair conformation. In addition, the potential for ring-flipping in a cyclohexane ring entails that each of these four possible configurations could further exist as a mixture of two or more conformations.

The effect of conformational flexibility in a ring system on the number of possible stereoisomers is shown using a case study of cis and trans configurations of 1,2-dimethylcyclohexane. While the cis configurations are chiral molecules (non-superposable mirror images) with the enantiomers as potential distinct stereoisomers, the rapid ring-flipping at room temperature renders these configurations interconvertible and inseparable. Accordingly, they represent conformations of the same molecule. On the other hand, the trans isomers are chiral molecules that cannot be superposed by rotation of the molecule or ring-flipping and exist as unique compounds. This proves the presence of three stereoisomers for the chosen example—the cis isomer and the pair of trans enantiomers.

This is further elucidated using another ring structure with a difference of substitutional position: 1,3-dimethylcyclohexane. The cis configuration is achiral due to a molecular plane of symmetry. Consequently, the system with two chiral centers exhibits three stereoisomers—the two trans non-interconvertible enantiomers and an achiral cis configuration. In essence, when a ring structure is evaluated, the two aspects that need to be studied are the ring-flipping and the plane of symmetry to determine the possible number of stereoisomers.

Tags

StereoisomerismCyclic CompoundsRing ConformationMolecular SymmetryChiral CentersChair ConformationPlane Of SymmetryRing flippingCis ConfigurationTrans ConfigurationEnantiomers

Del capítulo 4:

article

Now Playing

4.9 : Stereoisomerism of Cyclic Compounds

Estereoisomería

8.7K Vistas

article

4.1 : Quiralidad

Estereoisomería

22.9K Vistas

article

4.2 : Isomería

Estereoisomería

17.9K Vistas

article

4.3 : Estereoisomería

Estereoisomería

12.4K Vistas

article

4.4 : Nombrando a los Enantiomeros

Estereoisomería

19.8K Vistas

article

4.5 : Propiedades de los Enantiomeros y Actividad Óptica

Estereoisomería

16.7K Vistas

article

4.6 : Moléculas con múltiples centros quirales

Estereoisomería

11.2K Vistas

article

4.7 : Proyecciones de Fischer

Estereoisomería

12.9K Vistas

article

4.8 : Mezclas Racémicas y la Resolución de Enantiomeros

Estereoisomería

18.0K Vistas

article

4.10 : Quiralidad en el Nitrógeno, Fósforo y Azúfre

Estereoisomería

5.7K Vistas

article

4.11 : Proquiralidad

Estereoisomería

3.8K Vistas

article

4.12 : La quiralidad en la naturaleza

Estereoisomería

12.7K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados