Iniciar sesión

Essential proteins such as insulin or low-density lipoprotein (LDL) and micronutrients such as iron enter a eukaryotic cell through receptor-mediated endocytosis. Subsequently, the early endosomes fuse with the vesicles containing such receptor-ligand complexes and play a vital role in sorting the incoming ligands and receptors. While the ligands are either degraded inside the vesicle or released into the cytosol, their receptors are returned to the plasma membrane for further rounds of endocytosis.

Early endosomes have a membrane enriched in phosphatidylinositol 3-phosphate, also known as PtdIns(3)P, which regulates almost all sorting events in the early endosome along with two Ras-associated binding proteins or Rab proteins. Rabs localized in the early endosome, namely Rab4 and Rab5, are GTP-binding proteins that are active when bound to GTP and inactive when bound to GDP. Rab5 is extensively studied for several functions that it regulates, such as entry of endocytosed material into early endosomes, generation of phosphatidylinositol 3-phosphate, and movement of early endosomes along the microtubules. Rab4 regulates the recycling of receptors from the early endosome to the plasma membrane.

Improper protein sorting in the early endosome or loss of regulatory control in the sorting process can cause aberrant endosomal functions, leading to various neurological conditions such as Alzheimer’s disease, Huntington’s disease, or Down’s syndrome.

Despite the several important roles early endosomes play, their fundamental characteristics are not yet fully understood. For example, the mechanisms underlying the selection of specific Rab proteins for localization into the early endosomes are still unknown. It is also unclear if different early endosomes are involved in the sorting of different types of receptors. Additionally, early endosomes do not have distinct membrane markers that can be easily identified through light microscopy, making it difficult to distinguish them from other types of endosomes. Therefore, early endosomes are a yet-evolving topic of investigation.

Tags
Early EndosomeEndocytosisTransferrinReceptor mediated EndocytosisLigandsReceptorsVesiclesSortingDegradationCytosolPlasma MembranePhosphatidylinositol 3 phosphate PtdIns 3 PRab ProteinsRab4Rab5GTP binding ProteinsGDPPhosphatidylinositol 3 phosphate PI3PMicrotubulesProtein SortingNeurological Conditions

Del capítulo 18:

article

Now Playing

18.5 : El endosoma temprano: endocitosis de transferrina

Endocitosis y exocitosis

3.2K Vistas

article

18.1 : Endocitosis

Endocitosis y exocitosis

8.1K Vistas

article

18.2 : Fagocitosis

Endocitosis y exocitosis

5.7K Vistas

article

18.3 : Pinocitosis

Endocitosis y exocitosis

3.1K Vistas

article

18.4 : Endocitosis mediada por receptor

Endocitosis y exocitosis

5.7K Vistas

article

18.6 : Maduración de endosomas

Endocitosis y exocitosis

4.0K Vistas

article

18.7 : Vesículas intraluminales y cuerpos multivesiculares

Endocitosis y exocitosis

3.2K Vistas

article

18.8 : Regulación negativa de receptores en MVBs

Endocitosis y exocitosis

2.0K Vistas

article

18.9 : Visión general sobre los exosomas

Endocitosis y exocitosis

2.6K Vistas

article

18.10 : Endosomas de reciclaje y transcitosis

Endocitosis y exocitosis

2.5K Vistas

article

18.11 : Transcitosis de IgG

Endocitosis y exocitosis

2.6K Vistas

article

18.12 : Exocitosis

Endocitosis y exocitosis

6.0K Vistas

article

18.13 : Visión general de las vesículas de secreción

Endocitosis y exocitosis

5.9K Vistas

article

18.14 : Vesículas secretoras de insulina

Endocitosis y exocitosis

4.7K Vistas

article

18.15 : Fusión de las vesículas de secreción con la membrana plasmática

Endocitosis y exocitosis

8.1K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados