JoVE Logo

Iniciar sesión

15.13 : Next-generation Sequencing

The first human genome sequencing project cost $2.7 billion and was declared complete in 2003, after 15 years of international cooperation and collaboration between several research teams and funding agencies. Today, with the advent of next-generation sequencing technologies, the cost and time of sequencing a human genome have dropped over 100 fold.

Next-Generation Sequencing Methods

Although all next-generation methods use different technologies, they all share a set of standard features. Next-generation sequencing allows for the parallel sequencing of millions of fragments of DNA as opposed to the traditional sequencing methods. The pure genomic DNA is first fragmented into smaller fragments to make a sequencing library. This DNA library is then amplified for use in the actual sequencing reactions. While the reversible terminator sequencing method uses fluorescent dNTPs with a reversible terminator as a critical ingredient in the sequencing reaction, pyrosequencing utilizes the pyrophosphate released after the addition of each nucleotide. This pyrophosphate is appropriated for a light-generating reaction by the firefly luciferase enzyme, which can then be detected. Hence, both these methods work on the principle of ‘sequencing by synthesis.’ On the other hand, ‘sequencing by ligation’ methods rely on the specificity and sensitivity of DNA ligases towards mismatch base-pairing to decipher the nucleotide sequence of a DNA fragment.

Application of Next-Generation Sequencing

Next-generation sequencing methods are not solely applied to whole-genome sequencing. They are often used in the field of clinical diagnostics, epigenetics, metagenomics, epidemiology, and transcriptomics. Next-generation sequencing technologies also have the potential to be applied in personalized medicine to accelerate early detection and intervention of some disorders, including cancer.

Tags

Next generation SequencingHuman Genome SequencingCostTimeCollaborationInternational CooperationResearch TeamsFunding AgenciesNext generation Sequencing TechnologiesParallel SequencingDNA FragmentsSequencing LibraryReversible Terminator SequencingPyrosequencingSequencing By SynthesisSequencing By LigationNucleotide Sequence

Del capítulo 15:

article

Now Playing

15.13 : Next-generation Sequencing

Estudiando el ADN y el ARN

86.3K Vistas

article

15.1 : ADN recombinante

Estudiando el ADN y el ARN

16.6K Vistas

article

15.2 : Aislamiento del ADN

Estudiando el ADN y el ARN

37.4K Vistas

article

15.3 : Electroforesis de ADN en gel de agarosa

Estudiando el ADN y el ARN

95.0K Vistas

article

15.4 : Etiquetado de sondas de ADN

Estudiando el ADN y el ARN

8.1K Vistas

article

15.5 : Hibridación Southern

Estudiando el ADN y el ARN

18.1K Vistas

article

15.6 : Microarrays de ADN

Estudiando el ADN y el ARN

17.1K Vistas

article

15.7 : ADN complementario

Estudiando el ADN y el ARN

5.5K Vistas

article

15.8 : Hibridación fluorescente in-situ (FISH)

Estudiando el ADN y el ARN

19.4K Vistas

article

15.9 : PCR - Reacción en Cadena de Polimerasa

Estudiando el ADN y el ARN

83.2K Vistas

article

15.10 : RT-PCR en tiempo real

Estudiando el ADN y el ARN

56.6K Vistas

article

15.11 : RACE - Amplificación rápida de extremos de ADNc

Estudiando el ADN y el ARN

6.2K Vistas

article

15.12 : Secuenciación de Sanger

Estudiando el ADN y el ARN

751.5K Vistas

article

15.14 : Secuenciación de ARN

Estudiando el ADN y el ARN

9.7K Vistas

article

15.15 : Anotación y ensamblaje del genoma

Estudiando el ADN y el ARN

18.7K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados