JoVE Logo

Iniciar sesión

4.4 : Glucólisis: fase de rendimiento

So far, glycolysis has cost the cell two ATP molecules and produced two small, three-carbon sugar molecules. These molecules will proceed through the second half of the pathway, and sufficient energy will be extracted to pay back the two ATP molecules used as an initial investment and produce a profit for the cell of two additional ATP molecules and two even higher-energy NADH molecules.

Step 1 - 5: Glycolysis Preparatory Phase

The first phase of glycolysis has 5 steps where the glucose is broken down into two three-carbon sugar molecules. In the next five steps of the pay-off phase, these carbon molecules are further metabolized to produce ATP and NADH.

Step 6. The sixth step in glycolysis oxidizes the sugar (glyceraldehyde 3-phosphate), extracting high-energy electrons, which are picked up by the electron carrier NAD+, producing NADH. The sugar is then phosphorylated by adding a second phosphate group, producing 1,3-bisphosphoglycerate. Note that the second phosphate group does not require another ATP molecule.

Here again, is a potential limiting factor for this pathway. The continuation of the reaction depends upon the availability of the oxidized form of the electron carrier, NAD+. Thus, NADH must be continuously oxidized back into NAD+ to keep this step going. If NAD+ is not available, the second half of glycolysis slows down or stops. If oxygen is available in the system, the NADH will be oxidized readily, though indirectly, and the high-energy electrons from the hydrogen released in this process will be used to produce ATP. In an environment without oxygen, an alternate pathway (fermentation) can provide the oxidation of NADH to NAD+.

Step 7. In the seventh step, catalyzed by phosphoglycerate kinase, 1,3-bisphosphoglycerate donates a high-energy phosphate to ADP, forming one molecule of ATP. (This is an example of substrate-level phosphorylation.) A carbonyl group on the 1,3-bisphosphoglycerate is oxidized to a carboxyl group, and 3-phosphoglycerate is formed.

Step 8. In the eighth step, the remaining phosphate group in 3-phosphoglycerate moves from the third carbon to the second carbon, producing 2-phosphoglycerate (an isomer of 3-phosphoglycerate). The enzyme catalyzing this step is a mutase (an isomerase).

Step 9. Enolase catalyzes the ninth step. This enzyme causes 2-phosphoglycerate to lose water from its structure; this is a dehydration reaction, resulting in the formation of a double bond that increases the potential energy in the remaining phosphate bond and produces phosphoenolpyruvate (PEP).

Step 10. The last step in glycolysis is catalyzed by the enzyme pyruvate kinase (the enzyme, in this case, is named for the reverse reaction of pyruvate's conversion into PEP) and results in the production of a second ATP molecule by substrate-level phosphorylation and the compound pyruvic acid (or its salt form, pyruvate). Many enzymes in enzymatic pathways are named for the reverse reactions since the enzyme can catalyze both forward and reverse reactions (these may have been described initially by the reverse reaction that takes place in vitro, under nonphysiological conditions).

This text is adapted from Openstax, Biology 2e, Section 7.2: Glycolysis

Tags

GlycolysisPay off PhaseATPNADHOxidationPhosphorylationSubstrate level PhosphorylationIsomeraseDehydrationEnergy Production

Del capítulo 4:

article

Now Playing

4.4 : Glucólisis: fase de rendimiento

Introducción al metabolismo

9.7K Vistas

article

4.1 : Resumen de metabolismo

Introducción al metabolismo

29.5K Vistas

article

4.2 : Metabolismo de carbohidratos

Introducción al metabolismo

10.8K Vistas

article

4.3 : Glucólisis: fase preparatoria

Introducción al metabolismo

13.2K Vistas

article

4.5 : Destinos del piruvato

Introducción al metabolismo

8.3K Vistas

article

4.6 : Papel de las coenzimas reducidas NADH y FADH2

Introducción al metabolismo

11.1K Vistas

article

4.7 : Resumen del metabolismo del nitrógeno

Introducción al metabolismo

7.8K Vistas

article

4.8 : Resumen del metabolismo de los ácidos grasos

Introducción al metabolismo

30.2K Vistas

article

4.9 : Azúcares como moléculas de almacenamiento de energía

Introducción al metabolismo

8.3K Vistas

article

4.10 : Lípidos como moléculas de almacenamiento de energía

Introducción al metabolismo

24.8K Vistas

article

4.11 : Regulación del metabolismo

Introducción al metabolismo

9.2K Vistas

article

4.12 : Circuito de retroalimentación positiva y negativa

Introducción al metabolismo

17.0K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados