Iniciar sesión

The scalar multiplication of two vectors is known as the scalar or dot product. As the name indicates, the scalar product of two vectors results in a number, that is, a scalar quantity. Scalar products are used to define work and energy relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as a scalar product of the force vector with the displacement vector.

The scalar product of two vectors is obtained by multiplying their magnitudes with the cosine of the angle between them. In the definition of the dot product, the direction of the angle between the two vectors does not matter and can be measured from either of the two vectors. The scalar product of orthogonal vectors vanishes. Moreover, the dot product of two parallel vectors is the product of their magnitudes, and likewise, the dot product of two antiparallel vectors is also the product of their magnitudes. The scalar product of a vector with itself is the square of its magnitude.

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish because these unit vectors are orthogonal. The scalar multiplication of two vectors is commutative and obeys distributive law. The scalar product of two different unit vectors of axes is zero, and the scalar product of unit vectors with themselves is one. The scalar product of two vectors is used to find the angle between the vectors.

This text is adapted from Openstax, University Physics Volume 1, Section 2.4: Products of Vectors.

Tags

Scalar ProductDot ProductVector MultiplicationVector AlgebraWorkEnergyCartesian Coordinate SystemUnit VectorsCommutativeDistributive LawAngle Between Vectors

Del capítulo 2:

article

Now Playing

2.8 : Producto escalar (producto punto)

Vectores y escalares

8.1K Vistas

article

2.1 : Introducción a los escalares

Vectores y escalares

13.9K Vistas

article

2.2 : Introducción a los vectores

Vectores y escalares

13.6K Vistas

article

2.3 : Componentes vectoriales in el sistema de coordenadas cartesianas

Vectores y escalares

18.5K Vistas

article

2.4 : Coordenadas polares y cilíndricas

Vectores y escalares

14.2K Vistas

article

2.5 : Coordenadas esféricas

Vectores y escalares

9.8K Vistas

article

2.6 : Álgebra vectorial: método gráfico

Vectores y escalares

11.5K Vistas

article

2.7 : Álgebra vectorial: método de los componentes

Vectores y escalares

13.4K Vistas

article

2.9 : Producto vectorial (Producto cruz)

Vectores y escalares

9.3K Vistas

article

2.10 : Productos escalares y vectoriales triples

Vectores y escalares

2.2K Vistas

article

2.11 : Operador Gradiente y Supr

Vectores y escalares

2.4K Vistas

article

2.12 : Divergencia y rizo

Vectores y escalares

1.6K Vistas

article

2.13 : Segundas Derivadas y Operador de Laplace

Vectores y escalares

1.2K Vistas

article

2.14 : Integrales de línea, superficie y volumen

Vectores y escalares

2.2K Vistas

article

2.15 : La divergencia y los teoremas de Stokes

Vectores y escalares

1.4K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados