Iniciar sesión

When a lump of clay is dropped into water, it sinks. But if the same lump of clay is molded into the shape of a boat, it starts to float. Because of its shape, the clay boat displaces more water than the lump and experiences a greater buoyant force, even though its mass is the same. The same holds true for steel ships. The average density of an object majorly determines if the object will float. If an object's average density is less than that of the surrounding fluid, it will float. The reason is that the fluid, having a higher density, contains more mass and hence more weight in the same volume. The buoyant force, which equals the weight of the fluid displaced, is thus greater than the weight of the object. Likewise, an object denser than the fluid will sink.

The extent to which a floating object is submerged depends on how the object's density compares to the density of the fluid. For example, an unloaded ship has a lower density, and thus a small portion of it is submerged compared with the same ship when it is loaded. The fraction submerged is the ratio of the volume submerged to the object's volume. In other words, the volume submerged equals the volume of fluid displaced. The fraction submerged is also equal to the ratio of the object's density to the density of the fluid. This expression gives insightful information about the type of fluid needed to make an object float or sink. For example, numerous lower-density objects or substances float in higher-density fluids: oil on water, a hot-air balloon in the atmosphere, a bit of cork in wine, an iceberg in saltwater, and hot wax in a "lava lamp," to name a few. A less obvious example is mountain ranges floating on the higher-density crust and mantle beneath them. Even seemingly solid Earth has fluid characteristics.

This text is adapted from Openstax, University Physics Volume 1, Section 14.4: Archimedes' Principle and Buoyancy.

Tags
DensityArchimedes PrincipleBuoyant ForceFluid DisplacementFloating ObjectsSubmerged VolumeObject DensityFluid DensityMass ComparisonHigher density FluidsLower density ObjectsBuoyancy EffectsSolid Earth Characteristics

Del capítulo 13:

article

Now Playing

13.10 : Densidad y el principio de Arquímedes

Mecánica de fluidos

6.4K Vistas

article

13.1 : Características de los fluidos

Mecánica de fluidos

3.4K Vistas

article

13.2 : Densidad

Mecánica de fluidos

11.5K Vistas

article

13.3 : Presión de fluidos

Mecánica de fluidos

11.9K Vistas

article

13.4 : Variación de la presión atmosférica

Mecánica de fluidos

1.8K Vistas

article

13.5 : Principio de Pascal

Mecánica de fluidos

7.7K Vistas

article

13.6 : Aplicación del principio de Pascal

Mecánica de fluidos

7.6K Vistas

article

13.7 : Manómetros

Mecánica de fluidos

2.7K Vistas

article

13.8 : Flotabilidad

Mecánica de fluidos

5.8K Vistas

article

13.9 : Principio de Arquímedes

Mecánica de fluidos

7.4K Vistas

article

13.11 : Fluidos aceleradores

Mecánica de fluidos

945 Vistas

article

13.12 : Tensión superficial y energía superficial

Mecánica de fluidos

1.2K Vistas

article

13.13 : Exceso de presión dentro de una gota y una burbuja

Mecánica de fluidos

1.5K Vistas

article

13.14 : Ángulo de contacto

Mecánica de fluidos

11.3K Vistas

article

13.15 : Ascenso de líquido en un tubo capilar

Mecánica de fluidos

1.1K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados