Iniciar sesión

In aromatic compounds, such as benzene, the circulation of (4n + 2) π-electrons sets up a diamagnetic or diatropic ring current around the perimeter of the molecule. This current induces a magnetic field that opposes the external field inside the ring and reinforces it on the outside. The protons in benzene are deshielded and exhibit high chemical shifts in the range 6.5–8.5 ppm. The shielding effect at the center of the ring is evident in complex aromatic molecules, such as annulenes. In [18]annulene, protons outside the ring are deshielded and resonate at δ 9.3, while those at the center are so strongly shielded that they resonate at δ −3.0, below TMS. In anti-aromatic compounds with 4n π-electrons, the ring current flows in the opposite direction to that observed in aromatic compounds and is called the paratropic ring current. The induced field is also in the opposite direction. Thus, protons outside the ring are shielded in compounds like [16]annulene while those inside the ring are deshielded.

Tags

Electron EffectsChemical ShiftAromatic CompoundsAntiaromatic CompoundsBenzeneDiamagneticDiatropic Ring CurrentMagnetic FieldShielding EffectDeshielded ProtonsAnnulenesParatropic Ring CurrentTMS

Del capítulo 8:

article

Now Playing

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vistas

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

531 Vistas

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vistas

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Vistas

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Vistas

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

997 Vistas

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Vistas

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vistas

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Vistas

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vistas

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Vistas

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vistas

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

832 Vistas

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

898 Vistas

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

888 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados