A z score (or standardized value) is measured in units of the standard deviation. It tells you how many standard deviations the value x is above (to the right of) or below (to the left of) the mean, μ. Values of x that are larger than the mean have positive z scores, and values of x that are smaller than the mean have negative z scores. If x equals the mean, then x has a zero z score. It is important to note that the mean of the z scores is zero, and the standard deviation is one.

z scores help to find the outliers or unusual values from any data distribution. According to the range rule of thumb, outliers or unusual values have z scores less than -2 or greater than +2.

This text is adapted from Openstax, Introductory Statistics, 6.1 The Standard Normal Distribution

Tags
Z ScoreStandardized ValueStandard DeviationMeanPositive Z ScoresNegative Z ScoresZero Z ScoreOutliersUnusual ValuesData DistributionRange Rule Of ThumbStandard Normal Distribution

Del capítulo 5:

article

Now Playing

5.2 : Introduction to z Scores

Measures of Relative Standing

8.6K Vistas

article

5.1 : Revisión y vista previa

Measures of Relative Standing

6.6K Vistas

article

5.3 : z Puntuaciones y valores inusuales

Measures of Relative Standing

8.2K Vistas

article

5.4 : Percentil

Measures of Relative Standing

6.0K Vistas

article

5.5 : Cuartil

Measures of Relative Standing

3.7K Vistas

article

5.6 : Resumen de 5 números

Measures of Relative Standing

3.9K Vistas

article

5.7 : Diagrama de caja

Measures of Relative Standing

7.6K Vistas

article

5.8 : ¿Qué son los valores atípicos?

Measures of Relative Standing

3.4K Vistas

article

5.9 : Diagramas de caja modificados

Measures of Relative Standing

8.9K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados