JoVE Logo

Iniciar sesión

A random variable is a single numerical value that indicates the outcome of a procedure. The concept of random variables is fundamental to the probability theory and was introduced by a Russian mathematician, Pafnuty Chebyshev, in the mid-nineteenth century.

Uppercase letters such as X or Y denote a random variable. Lowercase letters like x or y denote the value of a random variable. If X is a random variable, then X is written in words, and x is given as a number.

For example, let X = the number of heads you get when you toss three fair coins. The sample space for tossing three fair coins is TTT; THH; HTH; HHT; HTT; THT; TTH; HHH. Then, x = 0, 1, 2, 3. X is in words, and x is a number. Notice that for this example, the x values are countable outcomes.

Random variables can be of two types: discrete random variables and continuous random variables.

A discrete random variable is a variable that has a finite quantity. In other words, a random variable is a countable number. For example, the numbers 1, 2, 3,4,5, and 6 on a die are discrete random variables.

A continuous random variable is a variable that has values from a continuous scale without gaps or interruptions. A continuous random variable is expressed as a decimal value. An example would be the height of a student - 1.83 m.

This text is adapted from Openstax, Introductory Statistics, section. 4 Introduction

Tags

Random VariableProbability TheoryPafnuty ChebyshevDiscrete Random VariablesContinuous Random VariablesSample SpaceCountable OutcomesFinite QuantityHeight MeasurementNumerical Value

Del capítulo 6:

article

Now Playing

6.2 : Random Variables

Probability Distributions

11.3K Vistas

article

6.1 : La probabilidad en estadística

Probability Distributions

12.2K Vistas

article

6.3 : Distribuciones de probabilidad

Probability Distributions

6.6K Vistas

article

6.4 : Histogramas de probabilidad

Probability Distributions

11.0K Vistas

article

6.5 : Resultados inusuales

Probability Distributions

3.1K Vistas

article

6.6 : Valor esperado

Probability Distributions

3.8K Vistas

article

6.7 : Distribución de probabilidad binomial

Probability Distributions

10.1K Vistas

article

6.8 : Distribución de probabilidad de Poisson

Probability Distributions

7.7K Vistas

article

6.9 : Distribución uniforme

Probability Distributions

4.7K Vistas

article

6.10 : Distribución normal

Probability Distributions

10.5K Vistas

article

6.11 : z Puntuaciones y área bajo la curva

Probability Distributions

10.3K Vistas

article

6.12 : Aplicaciones de la Distribución Normal

Probability Distributions

4.9K Vistas

article

6.13 : Distribución de muestras

Probability Distributions

11.7K Vistas

article

6.14 : Teorema del límite central

Probability Distributions

13.9K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados