Iniciar sesión

Multiple comparison test, abbreviated as MCT, is a post hoc analysis generally performed after comparing multiple samples with one or more tests. An MCT will help identify a significantly different sample among multiple samples or a factor among multiple factors.

It would be easy to compare two samples using a significance alpha level of 0.05. In other words, there is only one sample pair to be compared. However, it would be difficult to identify a significantly different sample if the number of samples increases. This is because the number of sample pairs to be compared or pairwise comparisons increases with the number of samples. Further, the percentage of Type-I error increases with the number of pairwise comparisons.

An MCT will help identify the significantly different mean among multiple samples by correcting the significance alpha values and reducing the Type-I error. Additionally, one can use different MCTs for datasets with equal or unequal sample sizes. An example of a commonly used MCT is the Bonferroni test.

Tags
Multiple Comparison TestsMCTPost Hoc AnalysisSignificant DifferenceSample ComparisonSignificance Alpha LevelType I ErrorPairwise ComparisonsBonferroni TestMean IdentificationEqual Sample SizesUnequal Sample Sizes

Del capítulo 10:

article

Now Playing

10.5 : Multiple Comparison Tests

Analysis of Variance

3.7K Vistas

article

10.1 : ¿Qué es un ANOVA?

Analysis of Variance

6.6K Vistas

article

10.2 : ANOVA de un factor

Analysis of Variance

6.8K Vistas

article

10.3 : ANOVA de un factor: tamaños de muestra iguales

Analysis of Variance

3.1K Vistas

article

10.4 : ANOVA de un factor: tamaños de muestra desiguales

Analysis of Variance

5.6K Vistas

article

10.6 : Prueba de Bonferroni

Analysis of Variance

2.5K Vistas

article

10.7 : ANOVA de dos factores

Analysis of Variance

2.5K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados