Iniciar sesión

A superconductor is a substance that offers zero resistance to the electric current when it drops below a critical temperature. Zero resistance is not the only interesting phenomenon as materials reach their transition temperatures. A second effect is the exclusion of magnetic fields. This is known as the Meissner effect. A light, permanent magnet placed over a superconducting sample will levitate in a stable position above the superconductor. High-speed trains that levitate on strong superconducting magnets have been developed, eliminating the friction normally experienced between the train and the tracks. On April 3, 1997, the Yamanashi Maglev test line in Japan officially opened, and in April 2015, the MLX01 test vehicle attained a speed of 374 mph using strong superconducting magnets.

Superconductors can be categorized into Type I and Type II superconductors.

Thirty pure metals exhibit zero resistivity below their critical temperature and exhibit the Meissner effect, the property of excluding magnetic fields from the interior of the superconductor while the superconductor is at a temperature below the critical temperature. These metals are called Type I superconductors. The superconductivity exists only below their critical temperatures and below a critical magnetic field strength. Type I superconductors have limited practical applications because the strength of the critical magnetic field needed to destroy the superconductivity is quite low.

Type II superconductors have much higher critical magnetic fields and can carry much higher current densities while remaining in the superconducting state. Various ceramics containing barium-copper-oxide have much higher critical temperatures for the transition into a superconducting state. Superconducting materials that belong to this subcategory of Type II superconductors are often categorized as high-temperature superconductors.

Tags

SuperconductorZero ResistanceCritical TemperatureMeissner EffectMagnetic FieldsLevitationType I SuperconductorsType II SuperconductorsHigh temperature SuperconductorsCurrent DensitiesBarium copper oxideYamanashi MaglevSuperconducting Magnets

Del capítulo 30:

article

Now Playing

30.21 : Types Of Superconductors

Electromagnetic Induction

865 Vistas

article

30.1 : Inducción

Electromagnetic Induction

3.8K Vistas

article

30.2 : Ley de Faraday

Electromagnetic Induction

3.7K Vistas

article

30.3 : Ley de Lenz

Electromagnetic Induction

3.4K Vistas

article

30.4 : Campos electromagnéticos de movimiento

Electromagnetic Induction

3.0K Vistas

article

30.5 : Dínamo de disco de Faraday

Electromagnetic Induction

1.9K Vistas

article

30.6 : Campos eléctricos inducidos

Electromagnetic Induction

3.4K Vistas

article

30.7 : Campos eléctricos inducidos: aplicaciones

Electromagnetic Induction

1.4K Vistas

article

30.8 : Corrientes de Foucault

Electromagnetic Induction

1.4K Vistas

article

30.9 : Corriente de desplazamiento

Electromagnetic Induction

2.7K Vistas

article

30.10 : Importancia de la corriente de desplazamiento

Electromagnetic Induction

4.2K Vistas

article

30.11 : Campos electromagnéticos

Electromagnetic Induction

2.1K Vistas

article

30.12 : La ecuación de Maxwell del electromagnetismo

Electromagnetic Induction

2.9K Vistas

article

30.13 : Simetría en las ecuaciones de Maxwell

Electromagnetic Induction

3.2K Vistas

article

30.14 : Ley de Ampere-Maxwell: Resolución de problemas

Electromagnetic Induction

445 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados