JoVE Logo

Iniciar sesión

9.12 : Testing a Claim about Mean: Unknown Population SD

A complete procedure of testing a hypothesis about a population mean when the population standard deviation is unknown is explained here.

Estimating a population mean requires the samples to be approximately normally distributed. The data should be collected from the randomly selected samples having no sampling bias. There is no specific requirement for sample size. But if the sample size is less than 30, and we don't know the population standard deviation, a different approach is used; instead of the z distribution, the t distribution is used for calculating the test statistic and critical value.

As in most realistic situations, the population standard deviation is often unknown; testing the claim about the population mean would utilize the sample standard deviation. The critical value is calculated using the t distribution (at specific degrees of freedom calculated from sample size) instead of the z distribution.

The hypothesis (null and alternative) should be stated clearly and then expressed symbolically. The null hypothesis is a neutral statement stating population mean is equal to some definite value. The alternative hypothesis can be based on the mean claimed in the hypothesis with an inequality sign. The right-tailed, left-tailed, or two-tailed hypothesis test can be decided based on the sign used in the alternative hypothesis.

As the method does not require normal distribution, the critical value is calculated using the t distribution (t table). It is generally calculated at 95% or 99% of the desired confidence level. As per the traditional method, the sample t statistic calculated from the sample data is compared with the t score (t critical value) obtained from the t table. The P-value is calculated based on the data as per the P-value method. Both these methods help conclude the hypothesis test.

Tags

Hypothesis TestingPopulation MeanUnknown Standard DeviationT DistributionSample SizeCritical ValueNull HypothesisAlternative HypothesisDegrees Of FreedomP valueConfidence LevelSampling BiasTest Statistic

Del capítulo 9:

article

Now Playing

9.12 : Testing a Claim about Mean: Unknown Population SD

Hypothesis Testing

3.4K Vistas

article

9.1 : ¿Qué es una hipótesis?

Hypothesis Testing

9.9K Vistas

article

9.2 : Hipótesis nulas y alternativas

Hypothesis Testing

7.9K Vistas

article

9.3 : Región Crítica, Valores Críticos y Nivel de Significación

Hypothesis Testing

11.7K Vistas

article

9.4 : Valor P

Hypothesis Testing

6.6K Vistas

article

9.5 : Tipos de pruebas de hipótesis

Hypothesis Testing

25.9K Vistas

article

9.6 : Toma de decisiones: Método del valor P

Hypothesis Testing

5.2K Vistas

article

9.7 : Toma de Decisiones: Método Tradicional

Hypothesis Testing

3.9K Vistas

article

9.8 : Hipótesis: ¿Aceptar o no rechazar?

Hypothesis Testing

27.4K Vistas

article

9.9 : Errores en las pruebas de hipótesis

Hypothesis Testing

4.1K Vistas

article

9.10 : Probando una afirmación sobre la proporción de la población

Hypothesis Testing

3.2K Vistas

article

9.11 : Prueba de una afirmación sobre la media: SD de población conocida

Hypothesis Testing

2.7K Vistas

article

9.13 : Probando una afirmación sobre la desviación estándar

Hypothesis Testing

2.4K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados