The high insolubility of some precipitates can result in an unfavorable relative supersaturation. This can lead to colloidal particles with a large surface-to-mass ratio, where adsorption is promoted. For instance, in the precipitation of silver chloride, silver ions are adsorbed on the surface of the colloidal particles, forming a primary layer. This layer attracts ions of opposite charge (such as nitrate ions), forming a diffuse secondary layer of adsorbed ions. This electric double layer prevents colloidal particles from colliding and coagulating into larger particles and stabilizes the suspension.

The coagulation of particles in a colloidal suspension can be enhanced by heating with stirring. This decreases adsorption and increases the kinetic energy of particles to overcome the electrostatic repulsion, enabling coagulation. Alternatively, the addition of an electrolyte can shrink the electrical double layer. At a critical coagulation concentration of electrolyte, the particles can coalesce spontaneously.

Following filtration of a coagulated colloid, washing with pure solvent can decrease the electrolyte concentration below the coagulation value, causing the particles to revert to their dispersed state. This process is called peptization and can be prevented by washing with a non-interfering electrolyte that can be removed by volatilization, such as nitric acid for silver chloride.

Tags
Colloidal PrecipitatesSupersaturationColloidal ParticlesSurface to mass RatioSilver ChlorideAdsorptionElectric Double LayerCoagulationElectrolyteCritical Coagulation ConcentrationPeptizationFiltrationPure SolventNon interfering Electrolyte

Del capítulo 5:

article

Now Playing

5.20 : Colloidal precipitates

Complexometric Titration, Precipitation Titration, and Gravimetry

367 Vistas

article

5.1 : Valoración complexométrica: descripción general

Complexometric Titration, Precipitation Titration, and Gravimetry

3.9K Vistas

article

5.2 : Valoración complexométrica: ligandos

Complexometric Titration, Precipitation Titration, and Gravimetry

732 Vistas

article

5.3 : Propiedades de los compuestos organometálicos

Complexometric Titration, Precipitation Titration, and Gravimetry

705 Vistas

article

5.4 : EDTA: Química y Propiedades

Complexometric Titration, Precipitation Titration, and Gravimetry

1.4K Vistas

article

5.5 : EDTA: Constante de Formación Condicional

Complexometric Titration, Precipitation Titration, and Gravimetry

528 Vistas

article

5.6 : EDTA: Reactivos Complejos Auxiliares

Complexometric Titration, Precipitation Titration, and Gravimetry

440 Vistas

article

5.7 : EDTA: Valoración directa, trasera y de desplazamiento

Complexometric Titration, Precipitation Titration, and Gravimetry

1.7K Vistas

article

5.8 : EDTA: Valoración indirecta y alcalina

Complexometric Titration, Precipitation Titration, and Gravimetry

532 Vistas

article

5.9 : Curvas de valoración EDTA complexométricas

Complexometric Titration, Precipitation Titration, and Gravimetry

620 Vistas

article

5.10 : Efectos del EDTA en los métodos de detección de puntos finales

Complexometric Titration, Precipitation Titration, and Gravimetry

187 Vistas

article

5.11 : Enmascaramiento y desenmascaramiento de agentes

Complexometric Titration, Precipitation Titration, and Gravimetry

1.9K Vistas

article

5.12 : Valoración de la precipitación: Visión general

Complexometric Titration, Precipitation Titration, and Gravimetry

3.6K Vistas

article

5.13 : Curva de valoración de la precipitación: análisis

Complexometric Titration, Precipitation Titration, and Gravimetry

772 Vistas

article

5.14 : Valoración de la precipitación: métodos de detección de puntos finales

Complexometric Titration, Precipitation Titration, and Gravimetry

1.1K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados