The first-order absorption model for extravascular administration describes the rate at which a drug is absorbed and eliminated, following the principles of first-order kinetics. This model is vital as it provides a mathematical representation of drug behavior within the body. It also allows for the prediction and interpretation of drug absorption and elimination based on the rate of change in drug concentration over time. This model can be visualized as a plasma concentration-time profile comprising absorption, post-absorption, and elimination phases. Crucial pharmacokinetic parameters such as peak plasma concentration (Cmax) and the duration required to reach it (tmax) can be calculated using this model.

Methods like residuals or the Wagner-Nelson method can be employed to determine the absorption rate constant. If the extrapolated and residual lines intersect at the y-axis at time t = 0, then there is no lag in absorption. However, if the intersection occurs at a time greater than zero, this indicates a time lag. The time lag is defined as the time difference between drug administration and the beginning of the absorption process. It is denoted by the symbol t0 and represents the start of absorption.

An interesting phenomenon that may occur in the plasma concentration-time curve is the flip-flop phenomenon. This refers to an interchange in the meanings of the slopes representing absorption and elimination. During the flip-flop phenomenon, a longer duration of drug sampling might be necessary to avoid overestimating the fraction of drug absorbed.

Del capítulo 7:

article

Now Playing

7.8 : One-Compartment Open Model for Extravascular Administration: First-Order Absorption Model

Pharmacokinetic Models

47 Vistas

article

7.1 : Métodos de análisis de datos farmacocinéticos: modelos y enfoques independientes del modelo

Pharmacokinetic Models

21 Vistas

article

7.2 : Enfoques de modelos para datos farmacocinéticos: modelos de compartimentos

Pharmacokinetic Models

15 Vistas

article

7.3 : Modelo abierto de un compartimento para la administración de bolo intravenoso: consideraciones generales

Pharmacokinetic Models

34 Vistas

article

7.4 : Modelo abierto de un compartimento para la administración de bolo intravenoso: estimación de la constante de tasa de eliminación, la vida media y el volumen de distribución

Pharmacokinetic Models

16 Vistas

article

7.5 : Modelo abierto de un compartimento para la administración de bolo intravenoso: estimación del espacio libre

Pharmacokinetic Models

12 Vistas

article

7.6 : Modelo de un compartimento: infusión intravenosa

Pharmacokinetic Models

32 Vistas

article

7.7 : Modelo abierto de un compartimento para administración extravascular: modelo de absorción de orden cero

Pharmacokinetic Models

9 Vistas

article

7.9 : Modelo abierto de un compartimento: Método de Wagner-Nelson y Loo Riegelman para la estimación de ka

Pharmacokinetic Models

49 Vistas

article

7.10 : Modelo abierto de un compartimento: datos de excreción urinaria y determinación de k

Pharmacokinetic Models

15 Vistas

article

7.11 : Modelos multicompartimento: descripción general

Pharmacokinetic Models

8 Vistas

article

7.12 : Modelo abierto de dos compartimentos: descripción general

Pharmacokinetic Models

26 Vistas

article

7.13 : Modelo abierto de dos compartimentos: administración de bolo intravenoso

Pharmacokinetic Models

51 Vistas

article

7.14 : Modelo abierto de dos compartimentos: infusión intravenosa

Pharmacokinetic Models

57 Vistas

article

7.15 : Modelo abierto de dos compartimentos: administración extravascular

Pharmacokinetic Models

31 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados