The Michaelis–Menten equation is a fundamental model for describing capacity-limited kinetics in drug metabolism. It offers insights into the rate of decline of plasma drug concentration Cp over time, with Vmax and KM as pivotal parameters.

Vmax represents the maximum achievable process rate, while KM, known as the Michaelis constant, signifies the drug concentration at which the process rate reaches half its maximum. This relationship between Vmax, KM, and Cp gives rise to three distinct scenarios that shed light on the dynamics of drug metabolism.

First, when KM = Cp, the process rate operates at half its maximum capacity. Conversely, if KM > Cp, the process rate mirrors first-order elimination, a pattern typically observed in most drugs at therapeutic levels. On the other hand, when KM < Cp, the process maintains a constant rate akin to zero-order elimination. Certain drugs, such as salicylates and phenytoin, follow first-order kinetics at lower therapeutic doses. In this state, the rate of drug elimination is proportional to the drug concentration. However, when these drugs are administered at elevated therapeutic doses, their metabolism saturates the hepatic mixed-function oxidases. This saturation shifts the kinetics to a zero-order pattern, where the elimination rate becomes constant and independent of drug concentration. The graphical representation of the Michaelis–Menten equation, known as the Michaelis–Menten plot, illustrates an initial linear rate increase with concentration, transitioning to mixed-order kinetics at higher concentrations and ultimately culminating in a plateau at Vmax.

In summary, the Michaelis–Menten equation serves as a foundational tool for understanding the intricacies of capacity-limited drug metabolism. It delineates the interplay between Vmax, KM, and Cp in shaping the rate of drug elimination within the body.

Del capítulo 8:

article

Now Playing

8.3 : Nonlinear Pharmacokinetics: Michaelis-Menten Equation

Nonlinear Pharmacokinetics

35 Vistas

article

8.1 : Farmacocinética no lineal: Visión general

Nonlinear Pharmacokinetics

83 Vistas

article

8.2 : Farmacocinética no lineal: causas de la no linealidad

Nonlinear Pharmacokinetics

26 Vistas

article

8.4 : Determinación de la tasa de eliminación constante y máxima de Michaelis

Nonlinear Pharmacokinetics

14 Vistas

article

8.5 : Farmacocinética no lineal: eliminación de fármacos para la inyección en bolo intravenoso

Nonlinear Pharmacokinetics

7 Vistas

article

8.6 : Distribución de fármacos como modelo de un compartimento y eliminación mediante farmacocinética no lineal: descripción general

Nonlinear Pharmacokinetics

9 Vistas

article

8.7 : Parámetros que afectan a la eliminación no lineal: entrada de orden cero, absorción de primer orden y modelo de dos compartimentos

Nonlinear Pharmacokinetics

8 Vistas

article

8.8 : Farmacocinética no lineal: dependencia de la vida media de eliminación y el aclaramiento de dosis

Nonlinear Pharmacokinetics

12 Vistas

article

8.9 : Cronofarmacocinética: ritmos circadianos e influencia en la respuesta a fármacos

Nonlinear Pharmacokinetics

23 Vistas

article

8.10 : Cronofarmacocinética: Farmacocinética dependiente del tiempo

Nonlinear Pharmacokinetics

28 Vistas

article

8.11 : Farmacocinética no lineal: biodisponibilidad y unión proteína-fármaco

Nonlinear Pharmacokinetics

43 Vistas

article

8.12 : Farmacocinética no lineal: papel de los transportadores

Nonlinear Pharmacokinetics

9 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados