JoVE Logo

Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Se implementó una combinación de las técnicas de microscopía con largo excitación de fluorescencia de varios fotones de longitud de onda del láser ópticas avanzadas para capturar imágenes de alta resolución, tridimensionales en tiempo real de la migración de la cresta neural en Tg (sox10:EGFP) y los embriones de pez cebra de Tg (foxd3:GFP).

Resumen

Ojo congénita y anomalías craneofaciales reflejan alteraciones en los nervios de la cresta, una población transitoria de células migratorias que dan lugar a numerosos tipos de células en todo el cuerpo. Entender la biología de la cresta neural ha sido limitada, lo que refleja una falta de modelos genéticamente manejables que pueden ser estudiado en vivo y en tiempo real. Pez cebra es un modelo de desarrollo particularmente importante para el estudio de las poblaciones de células migratorias, como la cresta neural. Para examinar la migración de la cresta neural en el ojo en desarrollo, se implementó una combinación de las técnicas ópticas avanzadas de láser, microscopía de excitación de fluorescencia de varios fotones de onda larga para capturar videos de alta resolución, tridimensionales en tiempo real del ojo en desarrollo en embriones de pez cebra transgénico, es decir, Tg (sox10:EGFP) y Tg (foxd3:GFP), como sox10 y foxd3 han demostrado en numerosos modelos animales para regular la diferenciación temprana de la cresta neural y probablemente representan los marcadores para células de la cresta neural. La proyección de imagen multi-photon Time-lapse fue utilizada para discernir el comportamiento y los patrones migratorios de dos poblaciones de células de cresta neural que contribuye al desarrollo temprano del ojo. Este protocolo proporciona información para la generación de vídeos Time-lapse durante la migración de la cresta neural del pez cebra, como un ejemplo y puede aplicarse más para visualizar el desarrollo temprano de muchas estructuras en el pez cebra y otros organismos modelo.

Introducción

Enfermedades congénitas oculares pueden causar ceguera de la infancia y a menudo debido a las anormalidades de la cresta neural craneal. Las células de la cresta neural son células transitorias que surgen a partir del tubo neural y forman numerosos tejidos en todo el cuerpo. 1 , 2 , 3 , 4 , 5 las células de la cresta Neural, derivadas del prosencéfalo y mesencéfalo, dan lugar a los huesos y el cartílago de la cara y regiones frontales, iris, córnea, red trabecular y esclera en el segmento anterior del ojo. 4 , 6 , 7 , 8 células de la cresta Neural desde el rhombencephalon forma que arcos de la faringe, mandíbula y tracto de salida cardíaco. 1 , 3 , 4 , 9 , 10 estudios han puesto de relieve las aportaciones de la cresta neural para ocular y periocular desarrollo, haciendo hincapié en la importancia de estas células en el desarrollo del ojo vertebrado. De hecho, alteración de la diferenciación y migración de células de cresta neural conducen a anomalías craneofaciales y oculares como se observa en el síndrome de Axenfeld-Rieger y síndrome de Peters Plus. 11 , 12 , 13 , 14 , 15 , 16 , 17 por lo tanto, una comprensión global de la migración, proliferación y diferenciación de estas células de la cresta neural se proporciona la penetración en la complejidad subyacente a enfermedades oculares congénitas.

El pez cebra es un organismo modelo de gran alcance para estudiar desarrollo ocular, como las estructuras del ojo de pez cebra son similares a sus contrapartes mamíferas, y muchos genes son conservados evolutivamente entre pez cebra y mamíferos. 18 , 19 , 20 además, embriones de pez cebra son transparentes y ovípara, facilitando la visualización del desarrollo del ojo en tiempo real.

Ampliando el trabajo previamente publicado,6,7,20 el patrón migratorio de las células de la cresta neural fue descrito usando múltiples fotones fluorescencia Time-lapse de imagen en líneas de pez cebra transgénico con proteína verde fluorescente (GFP) bajo el control transcripcional de SRY (sex-determining región Y)-caja de 10 (sox10) o caja del Forkhead D3 regiones reguladoras del gen de (foxd3). 21 , 22 , 23 , 24. proyección de imagen de múltiples fotones fluorescencia Time-lapse es una técnica poderosa que combina las técnicas ópticas avanzadas de láser microscopía con larga excitación de fluorescencia de varios fotones de longitud de onda para capturar imágenes de alta resolución, tridimensionales de las muestras etiquetadas con fluoróforos. 25 , 26 , 27 el uso del multi-photon laser tiene distintas ventajas sobre el estándar microscopia confocal, incluyendo penetración creciente del tejido y disminución fluoróforo blanqueo.

Usando este método, dos poblaciones distintas de las células de la cresta neural varía en el momento de la migración y vías migratorias fueron las células de la cresta neural es decir positivo de foxd3, discriminados en el mesenchyme periocular y el ojo en desarrollo y sox10-positivo de la cresta neural células de mesénquima craneofacial. Con este método, se introduce un enfoque para visualizar la migración de migración de la cresta de los nervios oculares y craneofacial en el pez cebra, lo que es fácil observar la migración de la cresta neural regulado en tiempo real durante el desarrollo.

Este protocolo proporciona información para la generación de vídeos Time-lapse durante el desarrollo temprano del ojo en Tg (sox10:EGFP) y Tg (foxd3:GFP) de pez cebra transgénico, por ejemplo. Este protocolo se puede aplicar aún más para la visualización de alta resolución, tridimensional en tiempo real del desarrollo temprano de cualquier estructura ocular y craneofacial derivado de las células de la cresta neural en el pez cebra. Además, este método puede ser aplicado además para la visualización del desarrollo de otros tejidos y órganos en el pez cebra y otros modelos animales.

Protocolo

The protocol described here was performed in accordance with the guidelines for the humane treatment of laboratory animals established by the University of Michigan Committee on the Use and Care of Animals (UCUCA).

1. Embryo Collection for Time-lapse Imaging

  1. Between 3 and 9 pm, set up male and female adult Tg(sox10:EGFP) or Tg(foxd3:GFP) transgenic zebrafish in a divided breeding tank for pairwise mating.
    NOTE: The Tg(sox10:EGFP) and Tg(foxd3:GFP) fish, kind gifts from Thomas Schilling and Mary Halloran, respectively, were crossed into the Casper (roy -/-, nacre -/-) background to decrease auto-fluorescence and interference with pigmentation.
    1. Assemble the breeding tank (slotted inner tank + solid outer tank) and fill it with reverse osmosis (RO) system water.
    2. Transfer up to 3 females and 3 males into opposing sides of the tank separated by a divider; up to 6 fish can be bred pairwise in a single breeding tank.
    3. The next morning, remove the divider shortly after the lights turn on in the vivarium.
      NOTE: In the present study, the lights are on a 14-hour light (on at 9 am) and 10-hour dark (off at 11 pm) cycle.
    4. Allow undisturbed mating for 20 min or until sufficient numbers of embryos are produced; the embryos will be at the bottom of the breeding tank. When eggs are observed, lift the slotted inner tank out along with the fish and quickly place them (fish and inner tank) into a clean solid outer tank filled with RO water.
  2. Prepare standard 1X embryo medium by adding the following per 1 L of RO water: 0.287 g (4.9 mM) NaCl, 0.127 g (0.17 mM) KCl, 0.048 g (0.33 mM) CaCl2.2H2O, 0.04 g (0.33 mM) MgSO4 (anhydrous). Stir solution until the salts are completely dissolved.
    1. Add 100 µL of 0.1% methylene blue as a fungicide. Add 0.25 g of sodium bicarbonate to adjust the pH to 7.75. Store medium at room temperature.
  3. Collect eggs from the outer tank using an egg-collecting screen, and transfer the eggs to Petri dishes (~50 embryos per dish) containing 30 mL of 1X embryo medium. Incubate the collected eggs at 28.5 °C.
  4. Embryo preparation
    1. Tg(sox10:EGFP) embryos.
      1. For Tg(sox10:EGFP) embryos, at 12 h post-fertilization (hpf), remove the dead eggs and assess the developmental stage of the embryos. Screen for GFP-positive embryos using a dissecting fluorescent stereomicroscope with a standard 460-490 nm band-pass excitation filter. Using forceps, remove the chorions from 3-4 embryos that express GFP, and transfer these embryos to a separate Petri dish containing 30 mL of fresh 1X embryo medium.
    2. Tg(foxd3:GFP) embryos.
      1. For Tg(foxd3:GFP) embryos, at 22-24 hpf, remove the dead eggs and assess the developmental stage of the embryos. Screen for positive embryos using a dissecting fluorescent stereomicroscope with a standard 460-490 nm band-pass excitation filter. Using forceps, remove the chorions from 3-4 embryos that express GFP.
      2. Prepare 1000X Phenylthiourea (PTU) stock solution by dissolving 0.75 g (3%) of PTU in 25 mL of Dimethylsulfoxide (DMSO). Aliquot and store the stock solution at 4 °C. Add 30 µL of 1000X PTU (3%) stock solution to 30 mL of 1X embryo medium to generate 0.003% PTU solution.
      3. Place the screened and dechorionated GFP-positive embryos in 0.003% PTU solution to inhibit pigmentation. Do not initiate treatment of the embryos with PTU prior to 20 hpf, as early treatment (at <20 hpf) can have adverse effects on neural crest and neuroepithelial development.28
    3. Prior to conducting the time-lapse experiment, monitor the embryos through live imaging using a standard stereomicroscope at 12-24 h intervals in age-matched comparisons as a control for temperature drift.

2. Mounting of Embryo for Time-lapse Imaging

  1. Preparation of time-lapse embryo media
    1. Prepare standard 0.4% tricaine stock solution by adding 0.004 g of tricaine to 100 mL of RO water. Aliquot (~1 mL) the stock solution into fresh 1.5-mL centrifuge tubes and store at -20 °C.
    2. Prepare time-lapse embryo medium (50 mL of 1X embryo medium, 0.016% tricaine) by adding 2 mL of 0.4% tricaine solution to 48 mL of 1X embryo medium. If using embryos >22 hpf, then also add 50 µL of 3% PTU stock solution (final concentration.003% PTU) to the embryo medium.
  2. Preparation of 2% low-melt agarose
    1. Add 0.4 g of low-melt agarose powder to 20 mL of 1X embryo medium. Heat for 1-2 min or until the solution is clear and all particles are dissolved.
      NOTE: Increasing the percentage of the agarose gel decreases the porosity of the matrix, which may physically impede the growth and development of the embryo. Therefore, the agarose solution can be lowered to 1.5% to minimize these effects. However, when the excitation beam is held stationary during laser-scanning microscopy, greater heating can occur, increasing rapidly in a logarithmic relationship with time. In this protocol, heating due to fluorophore absorption is highly localized to the focal region. Thus, in the region of interest, the temperature could increase to a value high enough (≥ 30 °C) to melt agarose solutions made at percentages lower than 1.5, thereby directly exposing the embryo to the laser or enabling conditions in which the embryo floats out of the focal plane. For this reason, the use of agarose solutions lower than 1.5% is not recommended.
    2. Aliquot (~1 mL) the agarose solution into fresh 1.5-mL centrifuge tubes for storage. Store excess agarose solution in liquid form on a heat block (60-70 °C) for 2-3 weeks.
  3. Mounting the Embryo
    1. To set up the open bath chamber, place a small amount of high vacuum grease on the base of the open bath chamber. Place a circular glass coverslip onto the base and screw the top of the open bath chamber onto the base until tight ( Figure 1A, B).
    2. Pipet (~500-700 µL) of 2% agarose solution (60-70 °C) into the open bath chamber until the base is ~3/4 filled ( Figure 1C). Note that once the agarose solution is in the open bath chamber on the lab bench, the temperature of the solution decreases approximately 1 °C/s.
    3. Wait 30 s to allow the agarose to cool slightly (~30-40 °C), without completely polymerizing, and subsequently transfer a single embryo to the center of the base ( Figure 1D, E).
    4. Under a fluorescent stereomicroscope, position the embryo using a 1-10 µL micropipette tip, making sure that the embryo is placed near the bottom of the agarose, as the embryo may float away when covered with embryo media if it is placed too near the surface of the agarose.
      NOTE: In the presented videos (Videos 1-3), the embryos are oriented laterally, but depending on the area of interest, the embryos can be oriented ventrally or dorsally.
    5. Monitor and reposition the embryo until the agarose has set. Once the agarose has set, use a transfer pipet to fill the assembled open chamber entirely with time-lapse embryo media ( Figure 1F).
    6. Place the open bath chamber in the quick exchange platform, which fits onto the stage adapter ( Figure 1G). Place the entire setup (embryo, open bath chamber, quick exchange platform and stage adaptor) onto the stage of the microscope immediately above the condenser ( Figure 1H).

3. Microscope Set-up for Time-lapse Imaging

  1. Determining laser settings
    1. Determining laser wavelength to use. Use a wavelength that is twice the excitation wavelength of the fluorophore of interest (e.g. wavelength between 880 and 940 nm for GFP).
      NOTE: In the present study, the wavelength setting for GFP was between 880 and 940 nm. The higher the wavelength, the lower the output power of the laser.
    2. Determine laser transmission. A high percent of laser transmission will kill the embryo, use the lowest level of transmission (recommended). For 24 to 48 h time-lapse studies, as presented herein, keep transmission below 5%.
    3. Determine microscope detection systems and ensure that the correct filters for the fluorophore are in place.
      NOTE: For multi-photon microscopes, there are multiple detection systems with various sensitivities for the emitted fluorescence. In general, an internal detection system has less sensitivity than an external detection system. For transgenic lines with high levels of GFP expression, the internal detection system is adequate. For transgenic lines with low levels of GFP expression or with other fluorophores (e.g., red fluorescent protein), an external detection system may be required to maintain the percent of laser transmission at a reasonable level. Regardless the detection system used, the correct filters for the fluorophore must be in place.
  2. Adjusting software settings on the multi-photon microscope
    1. Using the 5X objective, locate the embryo. Manually raise the stage to the highest position, and use the fine focus to position the embryo in the middle of the microscope range.
    2. Manually lower the stage, and change the 5X objective to the 25X water immersion objective (numerical aperture NA, 0.95). Carefully raise the stage to bring the embryo back into focus.
    3. In the software, click on the "xyzt" mode for obtaining multiple images at time intervals (t) in the x-y plane over a depth of "z". Use the epifluorescence or brightfield view to find the depth of focus in the area of interest, which will demarcate the Z-stack.
      1. In the software, click on "begin" button; for these experiments, the lateral edge of the eye was the beginning of the Z-stack. Click on "end" button; the midline of the embryo was the end of the Z-stack.
        NOTE: The step size was 0.3-0.6 µm and there was a total of ~200 steps for a z-stack size of 60 to 120 µm).
    4. Click on the menu for adjusting acquisition time and imaging frequency. For the present system, ~200 steps requires approximately 5 min for each z-stack acquisition. For adequate recovery of the fluorophore and survival of the embryo, allow for a ratio of at least 1:3 between z-stack acquisition (laser power on) and recovery time (laser power off).
      NOTE: For example, z-stacks are acquired every 20 min with 5 min of z-stack acquisition and 15 min of recovery. For this protocol, larger z-stacks can be obtained, but would appropriately increase the time between z-stack acquisitions, resulting in fewer images over the time-lapse course.
      1. With appropriate time for embryo recovery, set the time between z-stacks in the designated window. Set the total length of time for the experiment in the appropriate window.
    5. Final software, laser, and embryo adjustments.
      1. Turn on the live image setting to make final adjustments to the laser settings. Adjust laser transmission (see 3.1.2), gain and offset slider bars within the software to optimize the fluorescent image. Also, adjust the orientation of the embryo, as needed, depending on the length of the experiment, anticipated growth of the embryo, etc. Make sure that the area of interest remains within the frame through the duration of the experiment.
      2. Turn off the epifluorescent light source as it is no longer needed during time-lapse acquisition. Cover the stage with the laser safety box ( Figure 1I). When using the internal detection system, the laser safety box is adequate for protection against background light. Press "start".
        NOTE: However, with more sensitive external detection systems, the laser safety box does not block enough background light, and additional covers are required to prevent the disruption of image acquisition.

4. During Time-lapse Acquisition

  1. Refill the open bath chamber with time-lapse embryo media every 8-12 h (at least 2 times per day) during time-lapse acquisition through the sliding doors on the laser safety box ( Figure 1I).
  2. Before opening the doors of the laser safety box, ensure that the microscope is not actively acquiring an image.
    NOTE: The use of heaters and circulating media systems is not necessary for time-lapse imaging experiments lasting 24 to 48 h. Indeed, the temperatures of both stage and in-line heaters are difficult to control, and during image acquisition the embryo exhibits an adequate development rate at a temperature range from 25-28 °C. Moreover, circulating media systems tend to overflow and potentially damage the equipment. Thus, all embryos are routinely staged post-acquisition.

5. Post-acquisition processing

  1. In the software, click on the "file" menu and choose "save".
  2. Open the file in image processing software (see the Table of Materials). Highlight the correct image series. In the software, choose the "Process" menu. Click on 3D Deconvolution and "Apply" to deconvolve each z-stack.
    NOTE: The file is large; therefore, this step may take many hours.
  3. In the software, under the "Process" menu, click on "maximum projection." Click on "Apply" to initiate maximum projection to generate 1 image per z-stack. Export each maximum projected file (1 image per z-stack) as a tiff.
  4. Import individual tiff files into video processing software. Select all tiff files and drag them into the video editor. Adjust length of each image within the video to 0.1s. Export video as mov or mp4 file.

Resultados

Imágenes de Time-lapse de fluorescencia de varios fotones generan una serie de videos que revelaron los patrones de migración de las células de la cresta de los nervios craneales que dan lugar a las estructuras craneofaciales y segmento anterior del ojo en la Tg (sox10:EGFP) y Tg (foxd3:GFP) líneas de pez cebra. Por ejemplo, sox10 -células cresta neural positiva entre 12 y 30 hpf migran desde el borde del tubo neural en la región craneofacial (Vide...

Discusión

La proyección de imagen multi-photon Time-lapse permite el seguimiento en vivo de poblaciones celulares transitorias y migratorias. Esta poderosa técnica se puede utilizar para el estudio de los procesos embrionarios en tiempo real, y en el presente estudio, los resultados de este método mejorado el conocimiento actual de la migración de células de cresta neural y el desarrollo. Anteriores estudios Time-lapse de imágenes típicamente utilizan la microscopía de láser confocal. 29 <...

Divulgaciones

Este trabajo fue apoyado por subvenciones de la National Eye Institute de los National Institutes of Health (K08EY022912-01) y visión investigación núcleo (P30 EY007003).

Agradecimientos

Los autores agradecen a Thomas Schilling para amablemente regalar el pescado Tg (sox10:eGFP) y Mary Halloran para amablemente regalar pescado Tg(foxd3:GFP) .

Materiales

NameCompanyCatalog NumberComments
Breeding Tanks with DividersAquaneeringZHCT100Crossing Tank Set (1.0-liter) Clear Polycarbonate with Lid and Insert
M205 FA Combi-ScopeLeica Microsystems CMS GmbHStereofluorescence Microscope - FusionOptics and TripleBeam
Sodium ChlorideMillipore (EMD)7760-5KGDouble PE sack. CAS No. 7647-14-5, EC Number 231-598-3
Potassium ChlorideMillipore (EMD)1049380500Potassium chloride 99.999 Suprapur. CAS No. 7447-40-7, EC Number 231-211-8.
Calcium Chloride DihydrateFisher ScientificC79-500Poly bottle; 500 g. CAS No. 10035-04-8
Magnesium Sulfate (Anhydrous)Millipore (EMD)MX0075-1Poly bottle; 500 g. CAS No. 7487-88-9, EC Number 231-298-2
Methylene BlueMillipore (EMD)284-12Glass bottle; 25 g. Powder, Certified Biological Stain
Sodium BicarbonateMillipore (EMD)SX0320-1Poly bottle; 500 g. Powder, GR ACS. CAS No. 144-55-8, EC Number 205-633-8
N-PhenylthioureaSigmaP7629-25G>98%. CAS Number 103-85-5, EC Number 203-151-2
DimethylsulfoxideSigmaD8418-500MLMolecular Biology grade. CAS Number 67-68-5, EC Number 200-664-3
Tricaine MethanesulfonateWestern Chemical Inc.MS222Tricaine-S
Low-Melt AgaroseISC BioexpressE-3112-25GeneMate Sieve GQA Low Melt Agarose, 25 g
Open Bath ChamberWarner InstrumentsRC-40HPHigh Profile
Glass CoverslipsFisher Scientific12-545-102Circle cover glass. 25 mm diameter
High Vacuum GreaseFisher Scientific14-635-5C2.0-lb. tube. DOW CORNING CORPORATION
1658832
Quick Exchange PlatformWarner InstrumentsQE-135 mm
Stage AdapterWarner InstrumentsSA-20LZ-AL16.5 x 10 cm
TC SP5 MP multi-photon microscopeLeica Microsystems CMS GmbH
Mai Tai DeepSee Ti-Sapphire LaserSpectraPhysics
Laser Safety BoxLeica Microsystems CMS GmbH
Leica Application Suite X (LAS X)  SoftwareLeica Microsystems CMS GmbH
Photoshop CS 6 Version 13.0 x64 SoftwareAdobe
iMovie Version 10.1.4 SoftwareApple

Referencias

  1. Barembaum, M., Bronner-Fraser, M. Early steps in neural crest specification. Sem Cell Dev Biol. 16, 642-646 (2005).
  2. Gage, P. J., Rhoades, W., Prucka, S. K., Hjalt, T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci. 46 (11), 4200-4208 (2005).
  3. Minoux, M., Rijli, F. M. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 137, 2605-2621 (2010).
  4. Trainor, P. A. Specification of neural crest cell formation and migration in mouse embryos. Sem Cell Dev Biol. 16, 683-693 (2005).
  5. Johnston, M. C., Noden, D. M., Hazelton, R. D., Coulombre, J. L., Coulombre, A. Origins of avian ocular and periocular tissues. Exp Eye Res. 29, 27-43 (1979).
  6. Bohnsack, B. L., Kahana, A. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Dev Biol. 373, 300-309 (2013).
  7. Chawla, B., Schley, E., Williams, A. L., Bohnsack, B. L. Retinoic acid and pitx2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res B Dev Reprod Toxicol. , (2016).
  8. Trainor, P. A., Tam, P. P. L. Cranial paraxial mesoderm and neural crest cells of the mouse embryo-codistribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development. 121 (8), 2569-2582 (1995).
  9. Hong, C. S., Saint-Jeannet, J. P. Sox proteins and neural crest development. Sem Cell Dev Biol. 16, 694-703 (2005).
  10. Steventon, B., Carona-Fontaine, C., Mayor, R. Genetic network during neural crest induction: from cell specification to cell survival. Sem Cell Dev Biol. 16, 647-654 (2005).
  11. Dressler, S., et al. Dental and craniofacial anomalies associated wth Axenfeld-Rieger syndrome with PITX2 mutation. Case Report Med. , 621984 (2010).
  12. Ozeki, H., Shirai, S., Ikeda, K., Ogura, Y. Anomalies associated with Axenfeld-Rieger syndrome. Graefes Arch Clin Exp Ophthalmol. 237 (9), 730-734 (1999).
  13. Strungaru, M. H., Dinu, I., Walter, M. A. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci. 48, 228-237 (2007).
  14. Tumer, Z., Bach-Holm, D. Axenfeld-Rieger syndrome and spectrum of Pitx2 and Foxc1 mutations. Eur J Hum Genet. 17, 1527-1539 (2009).
  15. Schoner, K., et al. Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters plus syndrome and B3GALTL mutations. Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn. 33 (1), 75-80 (2013).
  16. Aliferis, K., et al. A novel nonsense B3GALTL mutation confirms Peters plus syndrome in a patient with multiple malformations and Peters anomaly. Ophthalmic Genet. 31 (4), 205-208 (2010).
  17. Lesnik Oberstein, ., S, A., et al. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 79 (3), 562-566 (2006).
  18. Brittijn, S. A., et al. Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol. 53, 835-850 (2009).
  19. Bohnsack, B. L., Kasprick, D., Kish, P. E., Goldman, D., Kahana, A. A zebrafish model of Axenfeld-Rieger Syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Invest Ophthalmol Vis Sci. 53 (1), 7-22 (2012).
  20. Williams, A. L., Eason, J., Chawla, B., Bohnsack, B. L. Cyp1b1 regulates ocular fissure closure through a retinoic acid-independent pathway. Invest Ophthalmol Vis Sci. 58 (2), 1084-1097 (2017).
  21. Curran, K., Raible, D. W., Lister, J. A. Foxd3 controls melanophore specification in the zebrafish neual crest by regulation of Mitf. Dev Biol. 332 (2), 408-417 (2009).
  22. Dutton, K., Dutton, J. R., Pauliny, A., Kelsh, R. N. A morpholino phenocopy of the colourless mutant. Genesis. 30 (3), 188-189 (2001).
  23. Dutton, K. A., et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development. 128 (21), 4113-4125 (2001).
  24. Kucenas, S., Takada, N., Park, H. C., Woodruff, E., Broadie, K., Appel, B. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci. 11, 143-151 (2008).
  25. Denk, W., Strickler, J., Webb, W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  26. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2 (12), 932-940 (2005).
  27. Denk, W., Delaney, K. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods. 54 (2), 151-162 (1994).
  28. Bohnsack, B. L., Gallina, D., Kahana, A. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle developmnt to changes in retinoic acid and insulin-like growth factor signaling. PLoS ONE. 6, e22991 (2011).
  29. Gfrerer, L., Dougherty, M., Laio, E. C. Visualization of craniofacial development in the sox10:kaede transgenic zebrafish line using time-lapse confocal microscopy. J Vis Exp. (79), e50525 (2013).
  30. Lopez, A. L. R., Garcai, M. D., Dickinson, M. E., Larina, I. V. Live confocal microscopy of the developing mouse embryonic yolk sac vasculature. Methods Mol Biol. 1214, 163-172 (2015).
  31. McGurk, P. D., Lovely, C. B., Eberhart, J. K. Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy. J Vis Exp. (83), e51190 (2014).
  32. Nowotschin, S., Ferrer-Vaquer, A., Hadjantonakis, A. K. Imaging mouse development with confocal time-lapse microscopy. Methods Enzymol. 476, 351-377 (2010).

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Biolog a del desarrollon mero 126proyecci n de imagen de m ltiples fotones fluorescencia Time lapsel ser de barridomicroscopiasegmento anteriorsox10foxd3enfermedades oculares cong nitascresta neuraldesarrollo del ojopez cebra

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados