Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados Representativos
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Un desafío de analizar experimentos sincronizados de series de tiempo es que los experimentos a menudo difieren en la duración de la recuperación de la sincronía y el período del ciclo celular. Por lo tanto, las mediciones de diferentes experimentos no pueden analizarse en conjunto o compararse fácilmente. Aquí, describimos un método para alinear experimentos para permitir comparaciones específicas de fase.

Resumen

La investigación del ciclo celular a menudo depende de la sincronización de las poblaciones celulares para medir varios parámetros en una serie de tiempo a medida que las células atraviesan el ciclo celular. Sin embargo, incluso en condiciones similares, los experimentos replicados muestran diferencias en el tiempo requerido para recuperarse de la sincronía y atravesar el ciclo celular, evitando así las comparaciones directas en cada punto de tiempo. El problema de comparar mediciones dinámicas entre experimentos se exacerba en poblaciones mutantes o en condiciones de crecimiento alternativas que afectan el tiempo de recuperación de sincronía y / o el período del ciclo celular.

Hemos publicado previamente un modelo matemático paramétrico llamado Caracterización de la pérdida de sincronía del ciclo celular (CLOCCS) que monitorea cómo las poblaciones sincrónicas de células se liberan de la sincronía y progresan a través del ciclo celular. Los parámetros aprendidos del modelo se pueden usar para convertir puntos de tiempo experimentales de experimentos sincronizados de series temporales en una escala de tiempo normalizada (puntos de línea de vida). En lugar de representar el tiempo transcurrido en minutos desde el inicio del experimento, la escala de línea de vida representa la progresión desde la sincronía hasta la entrada del ciclo celular y luego a través de las fases del ciclo celular. Dado que los puntos de la línea de vida corresponden a la fase de la célula promedio dentro de la población sincronizada, esta escala de tiempo normalizada permite comparaciones directas entre experimentos, incluidos aquellos con períodos y tiempos de recuperación variables. Además, el modelo se ha utilizado para alinear experimentos de ciclo celular entre diferentes especies (por ejemplo, Saccharomyces cerevisiae y Schizosaccharomyces pombe), permitiendo así la comparación directa de las mediciones del ciclo celular, que pueden revelar similitudes y diferencias evolutivas.

Introducción

Las mediciones de series temporales realizadas en poblaciones sincronizadas de células a medida que progresan a través del ciclo celular es un método estándar para investigar los mecanismos que controlan la progresión del ciclo celular 1,2,3,4,5,6,7,8 . La capacidad de hacer comparaciones entre experimentos de series temporales de sincronía / lanzamiento es vital para nuestra comprensión de estos proceso....

Protocolo

1. Recopilación de datos experimentales y de fase del ciclo celular

  1. Sincronizar las células con respecto al ciclo celular utilizando el método de sincronización deseado (por ejemplo, elutriación centrífuga como se describe en Leman et al.18 o detención de feromonas de apareamiento como se describe en Rosebrock 19; tanto Leman et al.18 como Rosebrock19 también incluyen métodos para la liberación de la sincronía). Comience el muestreo a lo largo de la serie temporal, asegurándose de que la serie temporal tenga al menos dos períodos completos de cicl....

Resultados Representativos

Los pasos descritos en el protocolo anterior y en el flujo de trabajo de la Figura 1 se aplicaron a cinco experimentos de series temporales sincronizadas con ciclo celular para demostrar dos comparaciones representativas: entre réplicas con diferentes métodos de sincronía (feromona de apareamiento y elutriación centrífuga18) y plataformas de secuenciación (secuenciación de ARN [RNA-seq] y microarray), así como entre condiciones experimentales. Se realizaron m?.......

Discusión

Este artículo presenta un método para evaluar de manera más precisa y cuantitativa los datos de experimentos de series temporales en poblaciones sincronizadas de células. El método utiliza parámetros aprendidos de CLOCCS, un modelo de inferencia bayesiana que utiliza datos de fase del ciclo celular de entrada, como datos de gemación y datos de contenido de ADN por citometría de flujo, para parametrizar cada experimento14,15. CLOCCS utiliza los datos de fa.......

Divulgaciones

Los autores no tienen conflictos de intereses que revelar.

Agradecimientos

S. Campione y S. Haase fueron apoyados por fondos de la National Science Foundation (DMS-1839288) y los Institutos Nacionales de Salud (5R01GM126555). Además, los autores desean agradecer a Huarui Zhou (Universidad de Duke) por los comentarios sobre el manuscrito y por las pruebas beta del protocolo. También agradecemos a Francis Motta (Florida Atlantic University) y Joshua Robinson por su ayuda con el código Java.

....

Materiales

NameCompanyCatalog NumberComments
2x PBSFor Fixative Solution. Described in Leman 2014.
4% formaldehydeFor Fixative Solution.
100% EthanolFor flow cytometry fixation. Described in Haase 2002.
CLOCCShttps://gitlab.com/haase-lab-group/cloccs_alignment.git
Flow CytometerFor flow cytometry protocol.
Githttps://git-scm.com/
Java 19https://www.oracle.com/java/technologies/downloads/#java19
MicroscopeFor counting cells and buds.
Minicondahttps://docs.conda.io/en/latest/
Protease solutionFor flow cytometry protocol. Described in Haase 2002.
RNAse A solutionFor flow cytometry protocol. Described in Haase 2002.
SYTOX Green Nucleic Acid StainInvitrogenS7020For flow cytometry staining. Described in Haase 2002.
TrispH 7.5

Referencias

  1. Tyers, M., Tokiwa, G., Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO Journal. 12 (5), 1955-1968 (1993).
  2. Schwob, E., Nasmyth, K.

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Este mes en JoVEN mero 196Alineaci nseries temporalesmicasincronizaci nciclo celularcitometr a de flujomodelossoftware

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados