S'identifier

A balanced chemical equation provides the information of chemical formulas of the reactants and products involved in the chemical change. A reaction’s stoichiometry helps predict how much of the reactant is needed to produce the desired amount of product, or in some cases, how much product will be formed from a specific amount of the reactant.

The relative amounts of reactants and products represented in a balanced chemical equation are often referred to as stoichiometric amounts. However, in reality, the reactants are not always present in the stoichiometric amounts indicated by the balanced equation.

In a chemical reaction, the reactant which gets consumed first, and limits the amount of product formed, is the limiting reactant, while the other substance becomes the excess reactant. An excess of one or more reactants is often used to ensure the complete conversion of the other reactant into the product.

Consider the reaction for the formation of water represented by the equation:

Eq1

Stoichiometry indicates that two moles of hydrogen and one mole of oxygen react to produce two moles of water; that is, hydrogen and oxygen combine in a 2:1 ratio.

Imagine if 5 moles of hydrogen and 2 moles of oxygen are present. The ratio of the reactants is now 5:2 (or 2.5:1), which is greater than the stoichiometric ratio of 2:1. Hydrogen, therefore, is present in excess, and oxygen is the limiting reactant. Reaction of all the provided oxygen (2 mol) will consume 4 mol of the 5 mol of hydrogen provided, leaving 1 mol of hydrogen unreacted. Computing the molar amounts of each reactant provided and comparing them to the stoichiometric amounts represented in the balanced chemical equation is one way of identifying the limiting and excess reactants.

The rate of reaction is the change in the amount of a reactant or product per unit time. Reaction rates are therefore determined by measuring the time dependence of some property that can be related to reactant or product amounts.

Figure1

The rate of a chemical reaction can be plotted in a graph as the variance in concentrations of reactants and products as a function of time.

A reversible chemical reaction represents a chemical process that proceeds in both forward (left to right) and reverse (right to left) directions. The status of a reversible reaction is conveniently assessed by evaluating its reaction quotient (Q). For a reversible reaction described by

Eq2

the reaction quotient is derived directly from the stoichiometry of the balanced equation as

Eq3

where the subscript c denotes the use of molar concentrations in the expression.

Figure2

When the rates of the forward and reverse reactions are equal, the concentrations of the reactant and product species remain constant over time and the system is at equilibrium. A special double arrow is used to emphasize the reversible nature of the reaction.

This text is adapted fromOpenStax Chemistry 2e, Section 4.3: Reaction Stoichiometry;Section 4.4: Reaction Yield;Section 12.1: Chemical Reaction Rates;Section 13.1 Chemical Equilibria,Section 13.2 Equilibrium Constants.

Tags
Chemical ReactionsBalanced Chemical EquationReactantsProductsStoichiometryLimiting ReactantExcess ReactantComplete ConversionFormation Of WaterMoles Of HydrogenMoles Of Oxygen

Du chapitre 2:

article

Now Playing

2.1 : Chemical Reactions

Thermodynamique et cinétique chimique

9.6K Vues

article

2.2 : Enthalpie et chaleur de réaction

Thermodynamique et cinétique chimique

8.0K Vues

article

2.3 : Énergétique de la formation de la solution

Thermodynamique et cinétique chimique

6.6K Vues

article

2.4 : Entropie et solvatation

Thermodynamique et cinétique chimique

6.9K Vues

article

2.5 : Enthalpie libre et favorabilité thermodynamique

Thermodynamique et cinétique chimique

6.3K Vues

article

2.6 : Équilibres chimiques et équilibre de solubilité

Thermodynamique et cinétique chimique

4.0K Vues

article

2.7 : Loi de vitesse et ordre de réaction

Thermodynamique et cinétique chimique

9.0K Vues

article

2.8 : Effet du changement de température sur la vitesse de réaction

Thermodynamique et cinétique chimique

3.9K Vues

article

2.9 : Réactions en plusieurs étapes

Thermodynamique et cinétique chimique

7.1K Vues

article

2.10 : Énergie de dissociation de liaison et énergie d'activation

Thermodynamique et cinétique chimique

8.0K Vues

article

2.11 : Diagrammes d'énergie, états de transition et intermédiaires

Thermodynamique et cinétique chimique

15.2K Vues

article

2.12 : Prédire les résultats de la réaction

Thermodynamique et cinétique chimique

7.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.