JoVE Logo

S'identifier

12.18 : Dosage Compensation

In animals, gender is determined by the number and type of sex chromosome. For example, human females have two X chromosomes, and males have one X and one Y chromosome, whereas C.elegans with one X chromosome is a male, and the one with two X chromosomes is a hermaphrodite.

In addition to sexual development, the X chromosome has genes involved in autosomal functions such as brain development and the immune system. Therefore, males and females with distinct numbers of X chromosomes will have different copies of X-linked genes that may create an imbalance. To avoid this, animals have evolved mechanisms to compensate for the differences in X-linked genes between the two sexes.

There are three main mechanisms of dosage compensation. The first mechanism is found in female mammals, which inactivates one of the X chromosomes in females. The second mechanism is observed in male Drosophila, where they show a two-fold increase in the expression of X-linked genes. The third mechanism is documented in C.elegans, where the hermaphrodites decrease the transcription of both the X chromosomes by half.

In mammals, the X-inactivation is regulated by two noncoding, complementary RNAs—XIST and TSIX. The XIST is a noncoding RNA produced by one of the X chromosomes in females. It binds to the X chromosome that produces it and inhibits all other genes from that chromosome. Interestingly, XIST is only made from the inactivated X chromosome and not from the other one. The active copy of the X chromosome produces an antagonistic RNA molecule called TSIX that inhibits XIST activity. Therefore, the inactivated X chromosome produces XIST, and the functional copy of the chromosome produces TSIX.

Tags

Dosage CompensationGender DeterminationSex ChromosomesX ChromosomeY ChromosomeC elegansHermaphroditeX linked GenesImbalanceMechanisms Of Dosage CompensationX inactivationXISTTSIX

Du chapitre 12:

article

Now Playing

12.18 : Dosage Compensation

Génétique mendélienne

6.1K Vues

article

12.1 : Échiquier de Punnett

Génétique mendélienne

12.1K Vues

article

12.2 : croisement monohybride

Génétique mendélienne

7.9K Vues

article

12.3 : Croisement d'hybrides

Génétique mendélienne

5.6K Vues

article

12.4 : Croisements tri-hybrides

Génétique mendélienne

23.0K Vues

article

12.5 : Loi de l'indépendance de la transmission des caractères

Génétique mendélienne

5.7K Vues

article

12.6 : Test du Chi-carré

Génétique mendélienne

37.2K Vues

article

12.7 : Analyse généalogique

Génétique mendélienne

12.8K Vues

article

12.8 : Traits d’allèles multiples

Génétique mendélienne

11.6K Vues

article

12.9 : Dominance incomplète

Génétique mendélienne

21.0K Vues

article

12.10 : Allèles létaux

Génétique mendélienne

14.6K Vues

article

12.11 : Caractères polygéniques

Génétique mendélienne

7.4K Vues

article

12.12 : Les prédispositions génétique et l’environnement affecte le phénotype

Génétique mendélienne

6.4K Vues

article

12.13 : Chromosomes X et Y

Génétique mendélienne

21.5K Vues

article

12.14 : Le chromosome Y détermine le sexe masculin

Génétique mendélienne

6.5K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.