S'identifier

Protons in identical electronic environments within a molecule are chemically equivalent and have the same chemical shift. The replacement test is a useful tool to identify chemical equivalence and predict NMR spectra. A substituent replaces each of the protons being examined and the resulting molecules are compared. If the same molecule is obtained, the protons are equivalent or homotopic. Replacement of any hydrogens in ethane by chlorine yields chloroethane because all six protons are rendered homotopic by the rapid rotation of the carbon-carbon bond. Homotopic protons are interchangeable by rotation about an axis of symmetry and yield a single NMR signal.

In chloroethane, however, replacing the alpha- and beta-hydrogens gives 1,1-dichloroethane and 1,2-dichloroethane, respectively. Here, the protons attached to the alpha and beta carbons are non-equivalent with respect to each other and yield distinct NMR signals. Such protons are chemically non-equivalent and called constitutionally heterotopic or just heterotopic.

Tags

1H NMRChemical ShiftEquivalenceHomotopic ProtonsHeterotopic ProtonsReplacement TestNMR SpectraChloroethaneEthaneCarbon carbon BondNMR SignalConstitutionally Heterotopic

Du chapitre 8:

article

Now Playing

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Vues

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

531 Vues

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vues

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Vues

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Vues

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

997 Vues

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vues

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Vues

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Vues

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

834 Vues

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

898 Vues

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

890 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.