S'identifier

Gauss's law helps determine electric fields even though the law is not directly about electric fields but electric flux. In situations with certain symmetries (spherical, cylindrical, or planar) in the charge distribution, the electric field can be deduced based on the knowledge of the electric flux. In these systems, we can find a Gaussian surface S over which the electric field has a constant magnitude. Furthermore, suppose the electric field is parallel (or antiparallel) to the area vector everywhere on the surface. In that case, the flux integral transforms into the product of the electric field magnitude and an appropriate area. Thus, the equation representing Gauss's law simplifies to the following:

Equation1

When this flux is used in the expression for Gauss's law, an algebraic equation is obtained, which can be solved to find the magnitude of the electric field.

To summarize, when applying Gauss's law to solve a problem, the following steps are followed:

  1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows the choice of the appropriate Gaussian surface. For example, an isolated point charge has spherical symmetry, whereas an infinite line of charge has cylindrical symmetry.
  2. Choose a Gaussian surface with the same symmetry as the charge distribution, and identify its consequences. With this choice, the electric flux can be easily determined over the Gaussian surface.
  3. Evaluate the flux through the surface. The symmetry of the Gaussian surface allows for factoring the electric field outside the integral.
  4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand side of the equation representing Gauss's law. It is often necessary to perform an integration to obtain the net enclosed charge.
  5. Evaluate the electric field of the charge distribution.
Tags
Gauss s LawElectric FieldsElectric FluxGaussian SurfaceCharge DistributionSpatial SymmetryFlux IntegralElectric Field MagnitudeAlgebraic EquationNet Enclosed ChargeIntegrationProblem solving Steps

Du chapitre 23:

article

Now Playing

23.4 : Gauss's Law: Problem-Solving

Gauss's Law

1.5K Vues

article

23.1 : Flux électrique

Gauss's Law

7.3K Vues

article

23.2 : Calcul du flux électrique

Gauss's Law

1.6K Vues

article

23.3 : Loi de Gauss

Gauss's Law

6.7K Vues

article

23.5 : Loi de Gauss : symétrie sphérique

Gauss's Law

7.0K Vues

article

23.6 : Loi de Gauss : symétrie cylindrique

Gauss's Law

7.1K Vues

article

23.7 : Loi de Gauss : symétrie plane

Gauss's Law

7.5K Vues

article

23.8 : Champ électrique à l’intérieur d’un conducteur

Gauss's Law

5.7K Vues

article

23.9 : Charge sur un conducteur

Gauss's Law

4.3K Vues

article

23.10 : Champ électrique à la surface d’un conducteur

Gauss's Law

4.4K Vues

article

23.11 : Champ électrique d’une sphère non uniformément chargée

Gauss's Law

1.3K Vues

article

23.12 : Champ électrique des plaques conductrices parallèles

Gauss's Law

725 Vues

article

23.13 : Divergence et courbure du champ électrique

Gauss's Law

5.0K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.