Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Nous présentons un système d'introduction de l'échantillon des gouttelettes discret pour couplage inductif spectrométrie de masse à plasma (ICP-MS). Il est basé sur une puce microfluidique pas cher et jetable qui génère des gouttelettes hautement monodisperses dans une gamme de taille de 40 à 60 um à des fréquences de 90 à 7000 Hz.
Ce protocole traite de la fabrication et l'utilisation d'un faible coût puce microfluidique jetable système d'introduction d'échantillon pour couplage inductif spectrométrie de masse à plasma (ICP-MS). La puce produit monodisperses gouttelettes d'échantillon aqueux dans perfluorohexane (PFH). La taille et la fréquence des gouttelettes aqueuses peuvent varier dans l'intervalle de 40 à 60 um et de 90 à 7000 Hz, respectivement. Les gouttelettes sont éjectées à partir de la puce avec un deuxième flux de PFH et restent intactes lors de l'éjection. Un système de désolvatation sur mesure supprime la PFH et transporte les gouttelettes dans les ICP-MS. Ici, les signaux très stables avec une étroite répartition de l'intensité peut être mesurée, montrant la monodispersité des gouttelettes. Nous montrons que le système d'introduction peut être utilisé pour déterminer quantitativement le fer dans des cellules individuelles de globules rouges de bovin. Dans l'avenir, les capacités de l'appareil d'introduction peut être facilement étendu par l'intégration de modules microfluidiques supplémentaires.
L'analyse élémentaire d'échantillons liquides par couplage inductif spectrométrie de masse à plasma (ICP-MS) est couramment effectué en utilisant des nébuliseurs, en combinaison avec des chambres de pulvérisation en tant que système d'introduction 1. Dans ce système d'introduction de l'échantillon, l'échantillon est pulvérisée par un nébuliseur pour produire un aérosol polydispersé. Une chambre de pulvérisation en aval est utilisé pour filtrer les grosses gouttelettes. Cette méthode est associée à une forte consommation de l'échantillon (> 0,3 ml min -1) 2 et un transport de l'échantillon incomplètes. Ainsi, il devient impossible pour les applications où des volumes d'échantillon ne microlitres sont disponibles, comme dans les études biologiques, légistes, toxicologiques et cliniques 3. Pour réduire la consommation de l'échantillon, nébuliseurs avec des dimensions de buses plus petites ont été développés 3. Cependant, la taille de la buse réduit augmente le risque de colmatage lorsque des échantillons de liquides biologiques non digérés ou des solutions salines concentrées doivent être analysés 3.
Une approche différente pour l'introduction des échantillons a été proposé par Olesik et al. 4. Les auteurs injecte un liquide dans ICPMS sous la forme de microgouttelettes discrètes, monodisperses qui ont été produites par une micropompe entraîné piézo-électrique. Même si ce système n'a pas trouvé très large application, l'ouverture de la poursuite du développement du concept de l'introduction discrète de gouttelettes dans ICPMS. Aujourd'hui, entraînée piézo-électrique, systèmes qui peuvent produire des gouttelettes de taille de 30, 50, 70 et 100 um et à des fréquences de 100-2,000 Hz distribution, peut être acheté. Les gouttelettes peuvent être transportés dans ICPMS avec près de 100% d'efficacité 5. Ces distributeurs de microgouttelettes ont été appliquées pour mesurer quantitativement nanoparticules simples 5,6 ainsi que la caractérisation des cellules biologiques individuelles 7. Un système similaire basé sur la technologie jet d'encre thermique 8 a été testé pour l'analyse des échantillons biologiques 9. Bien que le disposystèmes gouttelettes d'introduction simples lable sont très efficaces, peut être utilisé pour de petits volumes d'échantillon et sont prometteurs pour l'analyse de nanoparticules et de cellules, ils ont plusieurs limitations. Pour une taille fixe de la buse, la taille des gouttelettes peut varier que légèrement (à moins que des paramètres personnalisés sont utilisées 10). Les modifications des propriétés physiques du liquide (pH, teneur en sel) peuvent modifier les caractéristiques de gouttelettes (taille, vitesse d'injection). En outre, ces dispositifs sont assez coûteux, sujettes à encrassement et sont difficiles à nettoyer.
Un autre procédé pour générer des gouttelettes est connu dans le domaine de la microfluidique gouttelettes 11. Au cours des dernières années gouttelettes microfluidique a suscité un intérêt pour les (bio) réactions chimiques 12-15 et pour les études de cellules individuelles 16,17. De plus, cette technique a été appliquée pour l'introduction des échantillons dans la spectrométrie de masse à ionisation par électronébulisation et 18,19 pour la préparation d'échantillons à laser assistée par matrice de désorption / ionization spectrométrie de masse 20,21.
Récemment, nous avons introduit un système de microfluidique pour l'échantillon introduction en ICP-MS 22. L'élément clé de notre système d'introduction est le liquide assistée éjection de gouttelettes (LADE) puce. Cette puce se compose entièrement de poly (diméthylsiloxane) (PDMS). Dans le premier canal de jonction se écouler mise au point est utilisé pour générer des gouttelettes monodispersées d'une solution aqueuse de l'échantillon (figure 1). A cet effet, le très volatile (point de 58-60 ° C 23 d'ébullition) et le transporteur non miscible phase de perfluorohexane (PFH) est utilisé (Figure 1). Ces propriétés permettent PFH une génération stable de gouttelettes et l'enlèvement rapide de la phase de la porteuse. Changements dans les propriétés de l'influence échantillon liquide cette méthode de génération moins, par rapport à d'autres générateurs de gouttelettes. La taille des gouttelettes est réglable sur une large gamme en modifiant le taux de la phase aqueuse et le flux PFH. Dans un SECONDAIRE avaly jonction, et plus PFH est ajouté pour augmenter la vitesse d'écoulement à au moins 1 m sec -1. A cette vitesse, le liquide peut être éjecté de la puce dans jet stable et droite (Figure 1) sans destruction de gouttelettes (Figure 1 encadré). Cette conception à double jonction permet de contrôler la stabilité de jet indépendante de la génération de gouttelettes. Les gouttelettes sont transportés vers les ICPMS avec un système de transport sur mesure. Ce système comprend un tube descendant et un desolvator à membrane pour éliminer la PFH. Les résidus secs des gouttelettes aqueuses sont ensuite ionisées dans le plasma de l'ICPMS et un détecteur mesure de masse des ions. La partie avant de la puce est d'assurer une liaison étanche avec le système de transport de gouttelettes en forme de tonneau. L'éjection de l'échantillon aqueux sous forme de gouttelettes dans PFH est bénéfique, parce que le contact avec la buse est évitée. Cela réduit considérablement le risque de bouchage des buses, ce qui peut être un problème lorsque l'on travaille avec des suspensions de cellules ou de codes solutions salines ncentrated. Les puces LADE, fabriqués par PDMS lithographie douce, ne coûtent pas cher (2 coût matériel d'environ $ par puce), jetable et facile à modifier. En combinaison avec la fabrication qui nécessite seulement une petite quantité de travail manuel chaque expérience peut être réalisée avec une nouvelle puce. Par conséquent, un nettoyage laborieux ne est pas nécessaire et la contamination croisée est minimisée.
Ici, la fabrication de la puce LADE par lithographie douce et son application pour ICPMS sont décrits. Des exemples de mesures avec une solution aqueuse et une suspension cellulaire sont présentées.
Access restricted. Please log in or start a trial to view this content.
1. SU-8 de fabrication de Maître (Figure 2)
REMARQUE: Effectuer la fabrication des moules maîtres SU-8 dans une chambre propre pour prévenir les défauts causés par des particules de poussière. Deux plaquettes sont nécessaires pour la fabrication, une plaquette avec des fonctionnalités microfluidiques et l'autre sans.
2. LADE Chip Fabrication
REMARQUE: La puce LADE est faite de deux PDMS pièces qui sont liées ensemble par collage 24. La première partie contient les caractéristiques microfluidiques. L'autre partie est plate et utilisée pour sceller les canaux. Collées ensemble, elles forment la forme ronde nécessaire pour interfacer la puce avec le système de transport des gouttelettes. Ici, la fabrication deles deux parties et leur liaison est décrite. Toutes les étapes du procédé sont présentés dans la figure 4.
3. Préparatifs de Système de mesure / Droplet Transport
REMARQUE: Construire l'ensemble du système de transport de gouttelettes sur le dessus d'une table optique, car il est nécessaire de construire une structure de support stable pour l'installation. Un schéma de l'ensemble du système de transport de gouttelette est représenté sur la figure 6.
4. Mesures
REMARQUE: Le protocole suivant est écrit d'une manière générale en raison de la variété des solutions et des suspensions qui peuvent être utilisés. Toutefois, les suspensions cellulaires sont dilués à une concentration de <1 x 10 7 cellules / ml, lorsque l'analyse de cellules uniques est réalisée, afin de se assurer que la majorité des gouttelettes effectuer seulement une cellule. Pour des mesures avec des cellules placer les pompes à seringue à un angle de sorte que la sortie des seringues pointe en bas et d'installer la tubulure de manière à ce qu'ils pointent vers le bas.
5. Concept étalonnage
Access restricted. Please log in or start a trial to view this content.
Le système présenté peut être utilisé pour mesurer de petits volumes de solutions ou de suspensions contenant des cellules ou des nanoparticules. Des exemples d'une mesure d'une solution standard et la caractérisation des cellules individuelles sont montrés ici. D'autres exemples peuvent être trouvés dans Verboket et al. 22.
Typiquement, le signal d'une seule goutte d'une solution est un événement très court. Il dure généralement quelques...
Access restricted. Please log in or start a trial to view this content.
Bien que la fabrication des puces est très sûre, il ya certains points critiques au cours de la fabrication qui requièrent une attention particulière. Tout d'abord, la propreté pendant le montage est très important pour éviter la contamination de la puce par la poussière. La poussière peut bloquer les canaux et prévenir une génération de gouttelettes stable. Deuxièmement, il est particulièrement important que la pointe est coupée orthogonal au canal de buse. L'angle de la coupe influence fortement...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
This work was supported by the European Research Council (ERC Starting Grant nμLIPIDS, No. 203428) and ETH Zurich (project number: ETH-49 12-2). The authors of this manuscript would like to thank Bodo Hattendorf for help with the ICP-MS and F. Kurth for cell counting. The authors also would like to thank Christoph Bärtschi and Roland Mäder for their support with building the mechanical setup. The clean room facility FIRST at ETH Zurich is acknowledged for support in microfabrication.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Silicon wafer 100 mm | Si-Mat (Kaufering, Germany) | ||
SU-8 2002 | Microchem Corp. (Massachusetts, U.S.A.) | ||
SU-8 2050 | Microchem Corp. (Massachusetts, U.S.A.) | ||
Acetone | Merk VWR (Darmstadt, Germany) | 100014 | |
MR-developer 600 | Microresist Technology GmbH (Berlin, Germany) | ||
Isopropanol | Merk VWR (Darmstadt, Germany) | 109634 | |
1H,1H,2H,2H-perfluorodecyltrichlorosilane | ABCR-Chemicals (Karlsruhe, Germany) | AB111155 | |
Sylgard 184 silicone elastomer kit (PDMS) | Dow Corning (Michigan, U.S.A.) | 39100000 | |
Perfluorohexane 99% | Sigma-Aldrich (Missouri, U.S.A.) | 281042 | |
FC-40 | ABCR-Chemicals (Karlsruhe, Germany) | AB103511 | |
Phosphate-buffered saline | Life Technologies (Paisley, U.K.) | 10010-015 | |
Red blood cells in phosphate-buffered saline | Rockland Immunochemicals Inc. (Pennsylvania, U.S.A.) | R400-0100 | |
Single-element standard solutions Na, Fe | Inorganic Ventures (Virginia, U.S.A.) | ||
Multielement standard solution | Merck Millipore (Massachusetts, U.S.A.) | IV | |
Nitric acid | Sub-boiled | ||
Ultrahigh-purity water | Merck Millipore (Massachusetts, U.S.A.) | ||
Hot plate HP 160 III BM | Sawatec (Sax, Switzerland) | used for wafer preparation | |
Spin modules SM 180 BM | Sawatec (Sax, Switzerland) | used for wafer preparation | |
High resolution film photomask | Microlitho (Essex, U.K.) | ||
Step profiler Dektak XT advanced | Bruker (Massachusetts, U.S.A.) | ||
Hot plate MR 3002 | Heidolph (Schwabach, Germany) | used for replica molding | |
1.5 mm biopsy puncher | Miltex (Pennsylvania, U.S.A.) | 33-31AA/33-31A | |
Spin coater WS-400 BZ-6NPP/LITE | Laurell (Pennsylvania, U.S.A.) | used for adhesive bonding | |
Syringe pump neMESYS | Cetoni (Korbussen, Germany) | ||
1 ml syringe | Codan (Lensahn, Germany) | 62.1002 | |
5 ml syringe | B. Braun (Melsungen, Germany) | 4606051V | |
PTFE tubing | PKM SA (Lyss, Switzerland) | PTFE-AWG-TFT20.N | |
Quadrupole-based ICPMS ELAN6000 | PerkinElmer (Massachusetts, U.S.A.) | ||
Membrane desolvator CETAC6000AT+ | CETAC Technologies (Nebraska, U.S.A.) | only the desolvator unit is used | |
High speed camera Miro M110 | Vision Research (New Jersey, U.S.A.) | ||
Data analysis program Origin pro | OriginLab Corp. (Massachusetts, U.S.A.) | version 8.6 | |
Microscope | Olympus (Tokyo, Japan) | IX71 |
Access restricted. Please log in or start a trial to view this content.
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon