Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Nous présentons ici le développement d’une configuration de circulation simulée pour l’évaluation de la thérapie multimodale, la planification pré-interventionnelle et la formation des médecins sur les anatomies cardiovasculaires. Avec l’application de tomodensitogrammes spécifiques au patient, cette configuration est idéale pour les approches thérapeutiques, la formation et l’éducation en médecine individualisée.
Les interventions par cathéter sont des options de traitement standard pour les pathologies cardiovasculaires. Par conséquent, des modèles spécifiques aux patients pourraient aider à former les compétences de câblage des médecins ainsi qu’à améliorer la planification des procédures interventionnelles. L’objectif de cette étude était de développer un procédé de fabrication de modèles imprimés en 3D spécifiques au patient pour des interventions cardiovasculaires.
Pour créer un fantôme élastique imprimé en 3D, différents matériaux d’impression 3D ont été comparés aux tissus biologiques porcins (c’est-à-dire le tissu aortique) en termes de caractéristiques mécaniques. Un matériau de raccord a été sélectionné sur la base d’essais comparatifs de traction et des épaisseurs de matériau spécifiques ont été définies. Des ensembles de données CT anonymisées à contraste amélioré ont été recueillis rétrospectivement. Des modèles volumétriques spécifiques au patient ont été extraits de ces ensembles de données et imprimés en 3D. Une boucle d’écoulement pulsatile a été construite pour simuler le flux sanguin intraluminal pendant les interventions. L’adéquation des modèles à l’imagerie clinique a été évaluée par imagerie par rayons X, tomodensitométrie, IRM 4D et échographie (Doppler). Un produit de contraste a été utilisé pour améliorer la visibilité dans l’imagerie par rayons X. Différentes techniques de cathétérisme ont été appliquées pour évaluer les fantômes imprimés en 3D dans la formation des médecins ainsi que pour la planification du traitement pré-interventionnel.
Les modèles imprimés ont montré une résolution d’impression élevée (~ 30 μm) et les propriétés mécaniques du matériau choisi étaient comparables à la biomécanique physiologique. Les modèles physiques et numériques ont montré une grande précision anatomique par rapport à l’ensemble de données radiologiques sous-jacent. Les modèles imprimés convenaient à l’imagerie par ultrasons ainsi qu’aux rayons X standard. L’échographie Doppler et l’IRM 4D ont montré des schémas d’écoulement et des caractéristiques marquantes (c.-à-d. turbulence, contrainte de cisaillement des parois) correspondant aux données natives. Dans un laboratoire basé sur un cathéter, les fantômes spécifiques au patient étaient faciles à cathétériser. La planification thérapeutique et la formation des procédures interventionnelles sur les anatomies difficiles (p. ex., cardiopathie congénitale) étaient possibles.
Des fantômes cardiovasculaires flexibles spécifiques au patient ont été imprimés en 3D et l’application de techniques d’imagerie clinique courantes a été possible. Ce nouveau procédé est idéal comme outil de formation pour les interventions par cathéter (électrophysiologique) et peut être utilisé dans la planification d’un traitement spécifique au patient.
Les thérapies individualisées prennent de plus en plus d’importance dans la pratique clinique moderne. Essentiellement, ils peuvent être classés en deux groupes: les approches génétiques et morphologiques. Pour les thérapies individualisées basées sur un ADN personnel unique, le séquençage du génome ou la quantification des niveaux d’expression génique est nécessaire1. On peut trouver ces méthodes en oncologie, par exemple, ou dans le traitement des troubles métaboliques2. La morphologie unique (c.-à-d. l’anatomie) de chaque individu joue un rôle important dans la médecine interventionnelle, chirurgicale et prothétique. ....
Access restricted. Please log in or start a trial to view this content.
L’approbation éthique a été examinée par le comité d’éthique de la Ludwig-Maximilians-Universität München et a été levée étant donné que les ensembles de données radiologiques utilisés dans cette étude ont été collectés rétrospectivement et entièrement anonymisés.
Veuillez vous référer aux directives de sécurité IRM de l’institut, en particulier en ce qui concerne le ventricule LVAD utilisé et les composants métalliques de la boucle d’écoulement.
1. Acquisition de données
Access restricted. Please log in or start a trial to view this content.
Les résultats représentatifs décrits se concentrent sur quelques structures cardiovasculaires couramment utilisées dans la planification, l’entraînement ou les tests. Ceux-ci ont été créés à l’aide de jeux de données isotropes CT avec un ST de 1,0 mm et une taille de voxel de 1,0 mm³. L’épaisseur de paroi des modèles d’anévrisme de l’aortic a été fixée à 2,5 mm conformément aux résultats comparatifs des essais de traction du matériau d’impression (résist.......
Access restricted. Please log in or start a trial to view this content.
Le flux de travail présenté permet d’établir des modèles individualisés et d’effectuer ainsi une planification thérapeutique pré-interventionnelle, ainsi qu’une formation des médecins sur des anatomies individualisées. Pour ce faire, les données tomographiques spécifiques au patient peuvent être utilisées pour la segmentation et l’impression 3D de fantômes cardiovasculaires flexibles. En mettant en œuvre ces modèles imprimés en 3D dans une circulation simulée, différentes situations cliniques p.......
Access restricted. Please log in or start a trial to view this content.
Les auteurs ne déclarent aucun conflit d’intérêts.
Cette publication a été soutenue par la Fondation allemande du cœur / Fondation allemande de la recherche cardiaque.
....Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3-matic | Materialise AB | Software Version 15.0 - Commercial 3D-Modeling Software | |
Affiniti 50 | Philips Medical Systems GmbH | Ultrasonic Imaging System | |
Agilista W3200 | Keyence Co. | Polyjet 3D-Printer with a spatial resolution of 30µm | |
AR-G1L | Keyence Co. | flexible 3D-Printing material | |
Artis Zee | Siemens Healthcare GmbH | Angiographic X-ray Scanner | |
cvi42 | CCI Inc. | Software Version 5.12 - 4D Flow Analysis Software | |
Diagnostic Catheter, Multipurpose MPA 2 | Cordis, A Cardinal Health company | Catheter for pediatric training models, Sizes 4F for infants and 5F for children, young adults | |
Excor Ventricular Assist Device | Berlin Heart GmbH | 80 -100ml stroke volume | |
Imeron 400 Contrast Agent | Bracco Imaging | CT - Contrast Agent | |
IntroGuide F | Angiokard Medizintechnik GmbH | Guidewire with J-tip; diameter: 0.035" length: 220cm | |
Lunderquist Guidewire | Cook Medical Inc. | (T)EVAR interventional guidewire | |
MAGNETOM Aera | Siemens Healthcare GmbH | MRI Scanner | |
Magnevist Contrast Agent | Bayer Vital GmbH | MRI - Contrast Agent | |
Mimics | Materialise AB | Software Version 23.0 - Commercial Segmentation Software | |
Modeling Studio | Keyence Co. | 3D-Printer Slicing Software | |
PVC tubing | |||
Radifocus Guide Wire M | Terumo Europe NV | Straight guidewire; diameter: 0.035" length: 260cm | |
Really useful box 9L | Really useful products Ltd. | ||
Rotigarose - Standard Agar | Carl Roth GmbH | 3810.4 | |
Solidworks | Dassault Systemes SE | Software Version 2019-2020; CAD Design Software | |
SOMATOM Force | Siemens Healthcare GmbH | Computed Tomography Scanner | |
syngo via | Siemens Healthcare GmbH | Radiological Imaging Software |
Access restricted. Please log in or start a trial to view this content.
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon