Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Ce protocole démontre l’ablation cellulaire au laser de neurones individuels chez des larves de drosophile intactes. La méthode permet d’étudier l’effet de la réduction de la compétition entre les neurones du système nerveux en développement.
Le protocole décrit l’ablation d’un seul neurone avec un système laser à 2 photons dans le système nerveux central (SNC) de larves intactes de Drosophila melanogaster . En utilisant cette méthode non invasive, le système nerveux en développement peut être manipulé d’une manière spécifique à la cellule. Perturber le développement de neurones individuels dans un réseau peut être utilisé pour étudier comment le système nerveux peut compenser la perte d’entrée synaptique. Les neurones individuels ont été spécifiquement ablatés dans le système de fibres géantes de la drosophile, en mettant l’accent sur deux neurones : la fibre géante présynaptique (GF) et le motoneurone tergotrochantéral postsynaptique (TTMn). Le GF fait synapse avec le TTMn ipsilatéral, ce qui est crucial pour la réponse de fuite. L’ablation de l’un des GF dans le cerveau du 3estade, juste après le début de la croissance axonale, élimine définitivement la cellule pendant le développement du SNC. Le GF restant réagit au voisin absent et forme une terminaison synaptique ectopique au TTMn controlatéral. Cette terminaison atypique, à symétrie bilatérale, innerve les deux TTMn, comme le démontre le couplage des colorants, et entraîne les deux motoneurones, comme le démontrent les tests électrophysiologiques. En résumé, l’ablation d’un seul interneurone démontre une compétition synaptique entre une paire bilatérale de neurones qui peut compenser la perte d’un neurone et restaurer des réponses normales au circuit d’échappement.
L’ablation au laser est un outil privilégié pour disséquer les circuits neuronaux dans une grande variété d’organismes. Développé dans des systèmes génétiques modèles comme les vers et les mouches, il a été appliqué dans tout le règne animal pour étudier la structure, la fonction et le développement du système nerveux 1,2,3. Ici, l’ablation d’un seul neurone a été utilisée pour étudier comment les neurones interagissent lors de l’assemblage des circuits chez la drosophile. Le système d’échappement de la mouche est un circuit de prédilection pour l’analyse car il cont....
Tous les animaux utilisés pour le protocole étaient de l’espèce Drosophila melanogaster. Il n’y a aucun problème éthique entourant l’utilisation de cette espèce. Une autorisation éthique n’était pas nécessaire pour effectuer ce travail. Les détails de l’espèce, des réactifs et de l’équipement de la drosophile utilisés dans l’étude sont répertoriés dans la table des matériaux.
1. Élevage de la drosophile et sélection du bon stade larvaire
Cette méthode peut être utilisée pour manipuler le développement de réseaux neuronaux spécifiques dans le système nerveux de la drosophile. La principale question de recherche ici était la formation de connexions synaptiques. L’élimination de la GF présynaptique ou de la TTMn postsynaptique a permis d’étudier la synaptogenèse réactive au niveau de cette synapse centrale et les mécanismes moléculaires cruciaux pour la fonction et le développement synaptiques. Comme décrit dans le protocole, l.......
L’ablation cellulaire à l’aide d’un microscope à 2 photons s’est avérée être une méthode très efficace pour manipuler le développement des circuits neuronaux chez la drosophile. Comme cette méthode est non invasive, elle cause des dommages minimes à l’animal. Les données soutiennent l’utilité de cette manipulation spécifique aux cellules de circuits connus.
Le choix du pilote Gal4 le plus approprié était crucial pour le succès de l’ablation. Comme le GFS .......
Les auteurs n’ont rien à divulguer.
Des expériences sur le microscope à 2 photons ont été réalisées dans le FAU Stiles-Nicholson Brain Institute Advanced Cell Imaging Core. Nous tenons à remercier la Jupiter Life Science Initiative pour son soutien financier.
....Name | Company | Catalog Number | Comments |
Alexa Fluor 488 AffiniPure Goat Anti-Rabbit IgG (H+L) | Jaxkson ImmunoResearch | 111-545-003 | |
Anti-green fluorescent protein, rabbit | Fisher Scientific | A11122 | 1:500 concentration |
Apo LWD 25x/1.10W Objective | Nikon | MRD77220 | water immersion long working distance |
Bovine Serum Albumin (BSA) | Sigma | B4287-25G | |
Chameleon Ti:Sapphire Vision II Laser | Coherent | ||
Cotton Ball | Genesee Scientific | 51-101 | |
Dextra, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby) | Fisher Scientific | D1817 | |
Drosophila saline | recipe from Gu and O'Dowd, 2006 | ||
Ethyl Ether | Fisher Scientific | E134-1 | Danger, Flammable liquid |
Fly food B (Bloomington recipe) | LabExpress | 7001-NV | |
Methyl salicylate | Fisher Scientific | O3695-500 | |
Microcentrifuge tube 1.5 mL | Eppendorf | 22363204 | |
Microscope cover-slip 18x18 #1.5 | Fisher Scientific | 12-541A | |
Neurobiotin Tracer | Vector Laboratories | SP-1120 | |
Nikon A1R multi-photon microscope | Nikon | on an upright FN1 microsope stand | |
NIS Elements Advanced Research | Nikon | Acquisition and data analysis software | |
Paraformaldehyde (PFA) | Fisher Scientific | T353-500 | |
PBS (Phosphate Buffered Salin) | Fisher BioReagents | BP2944-100 | Tablets |
R91H05-Gal4 | Bloomington Drosophila Stock Center | 40594 | |
shakB(lethal)-GAl4 | Bloomington Drosophila Stock Center | 51633 | |
Superfrost microscope glass slide | Fisher Scientific | 12-550-143 | |
Triton X-100 | Fisher Scientific | 422355000 | detergent solution |
UAS-10xGFP | Bloomington Drosophila Stock Center | 32185 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon