JoVE Logo

Sign In

Nucleophilic substitution reactions of alkyl halides can proceed via an SN1 or an SN2 mechanism. While in SN2 reactions, the nucleophile attacks the substrate simultaneously as the leaving group departs, in SN1 reactions, the substrate first dissociates to give the carbocation intermediate. Various factors such as the structure of the substrate, the strength of the nucleophile, and the nature of the solvent promote one mechanism over the other.

With increased substitution on the alkyl halide, steric hindrance increases, and more stable carbocations are formed. Thus, with increased alkyl substitution, SN1 reactions are favored over SN2 reactions.

According to the kinetic studies of the rate-limiting step, the nature and concentration of nucleophiles affect only SN2 reaction rates. Thus, strong nucleophiles speed up SN2 reactions, while weak nucleophiles slow down SN2 reactions. As nucleophiles do not participate in the rate-determining step of an SN1 reaction, neither strong nor weak nucleophiles affect the reaction rate.

In SN2 reactions, polar protic solvents cage the nucleophiles through hydrogen bonds, delaying their approach towards the substrate. Polar aprotic solvents, on the contrary, destabilize the nucleophiles, thereby decreasing the activation energy and increasing the reaction rate. In SN1 reactions, polar protic solvents facilitate the departure of the leaving group by stabilizing the ions through solvation.

Tags

SN1SN2Nucleophilic Substitution ReactionsAlkyl HalidesLeaving GroupCarbocation IntermediateSubstrate StructureStrength Of NucleophileNature Of SolventSteric HindranceSubstitution On Alkyl HalideKinetic StudiesRate limiting StepNucleophile ConcentrationPolar Protic SolventsPolar Aprotic SolventsActivation EnergyReaction Rate

From Chapter 6:

article

Now Playing

6.14 : Predicting Products: SN1 vs. SN2

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.1K Views

article

6.1 : אלקיל הלידס

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

15.5K Views

article

6.2 : תגובות החלפה נוקלאופיליות

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

15.6K Views

article

6.3 : נוקלאופילים

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

12.8K Views

article

6.4 : אלקטרופילים

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

10.1K Views

article

6.5 : עזיבת קבוצות

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.3K Views

article

6.6 : קרבוקטיונים

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

10.7K Views

article

6.7 : SN2 תגובה: קינטיקה

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

8.1K Views

article

6.8 : SN2 תגובה: מנגנון

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.7K Views

article

6.9 : SN2 תגובה: מצב מעבר

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

9.2K Views

article

6.10 : SN2 תגובה: סטריאוכימיה

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

9.0K Views

article

6.11 : SN1 תגובה: קינטיקה

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.5K Views

article

6.12 : SN1 תגובה: מנגנון

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

11.4K Views

article

6.13 : SN1 תגובה: סטריאוכימיה

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

8.1K Views

article

6.15 : תגובות אלימינציה

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved