Sign In

A significant aspect of hydroboration–oxidation is the regio- and stereochemical outcome of the reaction.

Hydroboration proceeds in a concerted fashion with the attack of borane on the π bond, giving a cyclic four-centered transition state. The –BH2 group is bonded to the less substituted carbon and –H to the more substituted carbon. The concerted nature requires the simultaneous addition of –H and –BH2 across the same face of the alkene giving syn stereochemistry.

Figure1

The observed preference in regioselectivity can be explained on the basis of steric and electronic factors.

In the transition state, the larger part of the reagent (–BH2) is bonded to the less substituted carbon, thereby minimizing the steric tension. This results in a less crowded low-energy transition state, which is more stable than Markovnikov's transition state.

Figure2

Further, the addition of borane can result in a partial positive charge on either of the two carbons. However, a partial positive charge on the more substituted carbon is highly favorable, as it gives a more stable transition state. Hence, in order to achieve this, –BH2 must be placed at the less substituted carbon resulting in an anti-Markovnikov orientation.

The second part of the reaction is the oxidation of the product obtained from hydroboration.

Figure3

The migration of the alkyl group in this mechanism occurs with retention of configuration as it transfers with the electron pairs without reconstructing the tetrahedral geometry of the migrating carbon.

Since the reaction is stereospecific, it is essential to recognize the number of chiral centers formed. If one chiral center is formed, both enantiomers are obtained, as syn addition can occur from either face of the alkene with equal probability. However, if two chiral centers are formed, the syn addition dictates which pair of enantiomers is predominantly obtained.

Figure4

Tags

RegioselectivityStereochemistryHydroborationOxidationReaction OutcomeBoraneCyclic Four centered Transition StateSyn StereochemistrySteric FactorsElectronic FactorsMarkovnikov s Transition StatePartial Positive ChargeAnti Markovnikov OrientationAlkyl Group MigrationRetention Of Configuration

From Chapter 8:

article

Now Playing

8.9 : Regioselectivity and Stereochemistry of Hydroboration

Reactions of Alkenes

7.9K Views

article

8.1 : Regioselectivity של תוספות אלקטרופיליות-אפקט מי חמצן

Reactions of Alkenes

8.0K Views

article

8.2 : תגובת שרשרת רדיקלים חופשיים ופילמור של אלקנים

Reactions of Alkenes

7.3K Views

article

8.3 : הלוגנציה של אלקנים

Reactions of Alkenes

14.9K Views

article

8.4 : היווצרות הלוהידרין מאלקנס

Reactions of Alkenes

12.4K Views

article

8.5 : הידרציה מזורזת חומצה של אלקנים

Reactions of Alkenes

12.9K Views

article

8.6 : רגיוסלקטיביות וסטריאוכימיה של הידרציה מזורזת חומצה

Reactions of Alkenes

8.2K Views

article

8.7 : אוקסימרקורציה-הפחתה של אלקנים

Reactions of Alkenes

7.1K Views

article

8.8 : הידרובורציה-חמצון של אלקנים

Reactions of Alkenes

7.3K Views

article

8.10 : חמצון אלקנים: Syn Dihydroxylation עם Osmium Tetraoxide

Reactions of Alkenes

9.5K Views

article

8.11 : חמצון של אלקנים: syn dihydroxylation עם permanganate אשלגן

Reactions of Alkenes

10.2K Views

article

8.12 : חמצון אלקנים: אנטי דיהידרוקסילציה עם חומצות פרוקסי

Reactions of Alkenes

5.3K Views

article

8.13 : מחשוף חמצוני של אלקנים: אוזונוליזה

Reactions of Alkenes

9.5K Views

article

8.14 : הפחתה של אלקנים: הידרוגנציה קטליטית

Reactions of Alkenes

11.5K Views

article

8.15 : הפחתה של אלקנים: הידרוגנציה קטליטית אסימטרית

Reactions of Alkenes

3.2K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved