Sign In

Nitriles undergo acid-catalyzed hydrolysis or base-catalyzed hydrolysis to form a carboxylic acid. These reactions proceed via an amide intermediate.

Figure1

The acid-catalyzed mechanism involves the protonation of the nitrogen atom to make the carbon atom more susceptible to nucleophilic attack. The second step involves the nucleophilic attack by water on the nitrile carbon atom. Subsequently, deprotonation of the oxygen atom gives a tautomeric form of an amide, and protonation of the nitrogen forms a resonance stabilized intermediate. Next, the deprotonation yields an amide, which is followed by the protonation of the carbonyl oxygen. The second nucleophilic addition of water to the carbonyl carbon gives a tetrahedral intermediate, followed by deprotonation. Further, protonation of the nitrogen converts the amino group into a better leaving group. This is followed by the reconstruction of the carbonyl group by eliminating ammonia. Final deprotonation yields a carboxylic acid.

Base-catalyzed hydrolysis is another nucleophilic acyl substitution reaction. In this reaction, nitriles are treated in the presence of basic aqueous solutions to yield carboxylic acid. During base-catalyzed hydrolysis, the nucleophilic hydroxide ion attack the nitrile carbon atom. In the second step, the nitrogen atom gets protonated by water to remove the negative charge on the nitrogen to give the unstable enol tautomer of an amide. Next, hydroxide acting as a base deprotonates the oxygen atom to yield resonance stabilized intermediate, which upon protonation gives an amide. This is followed by the second nucleophilic attack by the hydroxide ion at the amide carbonyl carbon to give a tetrahedral intermediate. Subsequently, the carbonyl group is reconstructed with the departure of an amide ion as a leaving group. Lastly, deprotonation affords a carboxylate ion and ammonia, followed by acidification of the carboxylate ion to yield free acid.

Tags
NitrilesCarboxylic AcidsHydrolysisAcid catalyzedBase catalyzedAmide IntermediateNucleophilic AttackTautomeric FormResonance StabilizedTetrahedral IntermediateLeaving GroupCarboxylate Ion

From Chapter 14:

article

Now Playing

14.26 : Nitriles to Carboxylic Acids: Hydrolysis

Carboxylic Acid Derivatives

3.6K Views

article

14.1 : נגזרות חומצה קרבוקסילית: סקירה כללית

Carboxylic Acid Derivatives

3.1K Views

article

14.2 : מינוח של נגזרות חומצה קרבוקסילית: הלידי חומצה, אסטרים ואנהידרידים חומציים

Carboxylic Acid Derivatives

3.8K Views

article

14.3 : מינוח של נגזרות חומצה קרבוקסילית: אמידים וניטרילים

Carboxylic Acid Derivatives

3.6K Views

article

14.4 : מבנים של נגזרות חומצה קרבוקסילית

Carboxylic Acid Derivatives

2.3K Views

article

14.5 : תכונות פיזיות של נגזרות חומצה קרבוקסילית

Carboxylic Acid Derivatives

2.4K Views

article

14.6 : חומציות ובסיסיות של נגזרות חומצה קרבוקסילית

Carboxylic Acid Derivatives

3.3K Views

article

14.7 : ספקטרוסקופיה של נגזרות חומצה קרבוקסילית

Carboxylic Acid Derivatives

2.2K Views

article

14.8 : תגובתיות יחסית של נגזרות חומצה קרבוקסילית

Carboxylic Acid Derivatives

2.4K Views

article

14.9 : תחליף אציל נוקלאופילי של נגזרות חומצה קרבוקסילית

Carboxylic Acid Derivatives

2.7K Views

article

14.10 : חומצה הלידים לחומצות קרבוקסיליות: הידרוליזה

Carboxylic Acid Derivatives

2.4K Views

article

14.11 : חומצה Halides כדי אסטרים: אלכוהוליזיס

Carboxylic Acid Derivatives

2.6K Views

article

14.12 : חומצה Halides כדי Amides: Aminolysis

Carboxylic Acid Derivatives

2.5K Views

article

14.13 : חומצה הלידים לאלכוהולים: LiAlH4 הפחתה

Carboxylic Acid Derivatives

2.6K Views

article

14.14 : חומצה Halides כדי אלכוהולים: תגובת Grignard

Carboxylic Acid Derivatives

2.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved