JoVE Logo

Sign In

3.14 : Velocity and Position by Integral Method

If acceleration as a function of time is known, then velocity and position functions can be derived using integral calculus. For constant acceleration, the integral equations refer to the first and second kinematic equations for velocity and position functions, respectively.

Consider an example to calculate the velocity and position from the acceleration function. A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is −1/4·tm/s2. Let's determine the procedure to calculate the velocity and position function of the motorboat.

Let's take time, t = 0, when the boat starts to decelerate. Now, the velocity function can be calculated using the integral of the acceleration function

Equation1

Using the expression of acceleration in the above equation, the velocity as a function of time is calculated to be

Equation2

The constant of integration C1 is calculated to be 5 m/s using the value of initial time and velocity.

Hence, the velocity as a function of time reduces to

Equation3

Integrating the derived velocity function with respect to time, the position function is calculated. The position as a function of time is

Equation4

Again, using the initial conditions, the constant of integration C2 is calculated to be zero.

Thus, the position as a function of time reduces to

Equation5

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tags

Velocity FunctionPosition FunctionIntegral CalculusAcceleration FunctionConstant AccelerationKinematic EquationsMotorboat DecelerationIntegration ConstantsInitial ConditionsDisplacement CalculationTime Variable

From Chapter 3:

article

Now Playing

3.14 : Velocity and Position by Integral Method

Motion Along a Straight Line

5.9K Views

article

3.1 : מיקום ותזוזה

Motion Along a Straight Line

17.3K Views

article

3.2 : מהירות ממוצעת

Motion Along a Straight Line

18.1K Views

article

3.3 : מהירות מיידית - I

Motion Along a Straight Line

12.3K Views

article

3.4 : מהירות מיידית - II

Motion Along a Straight Line

9.1K Views

article

3.5 : תאוצה ממוצעת

Motion Along a Straight Line

9.4K Views

article

3.6 : האצה מיידית

Motion Along a Straight Line

7.6K Views

article

3.7 : משוואות קינמטיות - I

Motion Along a Straight Line

10.3K Views

article

3.8 : משוואות קינמטיות - II

Motion Along a Straight Line

9.3K Views

article

3.9 : משוואות קינמטיות - III

Motion Along a Straight Line

7.4K Views

article

3.10 : משוואות קינמטיות: פתרון בעיות

Motion Along a Straight Line

11.8K Views

article

3.11 : גופים נופלים חופשי: מבוא

Motion Along a Straight Line

8.0K Views

article

3.12 : גופים נופלים חופשי: דוגמה

Motion Along a Straight Line

15.7K Views

article

3.13 : מהירות ומיקום בשיטה גרפית

Motion Along a Straight Line

7.3K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved