Sign In

When a fluid is in constant acceleration, the pressure and buoyant force equations are modified. Suppose a beaker is placed in an elevator accelerating upward with a constant acceleration, a. In the beaker, assume there is a thin cylinder of height h with an infinitesimal cross-sectional area, ΔS.

The motion of the liquid within this infinitesimal cylinder is considered to obtain the pressure difference. Three vertical forces act on this liquid:

  1. An upward force due to the liquid present below the bottom surface of the cylinder.
  2. A downward force due to the liquid above the top surface of the cylinder.
  3. A downward force is due to weight of the cylindrical element.

Under these three forces, the liquid accelerates upward. Using Newton's second law, the following expression is obtained:

Equation1

Representing the fluid element's mass in terms of density () simplifies the equation, and the expression for the pressure difference for an accelerating fluid is obtained.

Equation2

To obtain the buoyant force, assume a body is dipped inside the same accelerating liquid. It experiences buoyant force and force due to its weight. For simplicity, the body is replaced by an equal volume of the same liquid. From Newton's second law, the buoyant force is expressed in terms of acceleration, and the following expression is obtained:

Equation3

Tags
Accelerating FluidsPressure DifferenceBuoyant ForceConstant AccelerationNewton s Second LawLiquid DynamicsFluid MechanicsUpward ForceDownward ForceCylindrical ElementDensityLiquid Motion

From Chapter 13:

article

Now Playing

13.11 : Accelerating Fluids

Fluid Mechanics

944 Views

article

13.1 : מאפייני נוזלים

Fluid Mechanics

3.4K Views

article

13.2 : צפיפות

Fluid Mechanics

11.4K Views

article

13.3 : לחץ נוזלים

Fluid Mechanics

11.8K Views

article

13.4 : וריאציה של לחץ אטמוספרי

Fluid Mechanics

1.8K Views

article

13.5 : חוק פסקל

Fluid Mechanics

7.6K Views

article

13.6 : יישום חוק פסקל

Fluid Mechanics

7.6K Views

article

13.7 : מדי לחץ

Fluid Mechanics

2.7K Views

article

13.8 : ציפה

Fluid Mechanics

5.7K Views

article

13.9 : עקרון ארכימדס

Fluid Mechanics

7.4K Views

article

13.10 : צפיפות ועקרון ארכימדס

Fluid Mechanics

6.4K Views

article

13.12 : מתח פני השטח ואנרגיית פני השטח

Fluid Mechanics

1.2K Views

article

13.13 : לחץ עודף בתוך טיפה ובועה

Fluid Mechanics

1.5K Views

article

13.14 : זווית מגע

Fluid Mechanics

11.3K Views

article

13.15 : עליית נוזל בצינור נימי

Fluid Mechanics

1.1K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved