JoVE Logo

Sign In

University of Dundee, UK

3 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

High-resolution Live Imaging of Cell Behavior in the Developing Neuroepithelium
Raman M. Das 1, Arwen C. Wilcock 1, Jason R. Swedlow 2, Kate G. Storey 1
1Neural Development Group, Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, UK, 2Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK

Imaging embryonic tissue in real-time is challenging over long periods of time. Here we present an assay for monitoring cellular and sub-cellular changes in chick spinal cord for long periods with high spatial and temporal resolution. This technique can be adapted for other regions of the nervous system and developing embryo.

image

Biology

Analysis of Global RNA Synthesis at the Single Cell Level following Hypoxia
John Biddlestone 1, Jimena Druker 1, Alena Shmakova 1, Gus Ferguson 1, Jason R. Swedlow 1, Sonia Rocha 1
1Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK

We describe a technique for analysis of global RNA synthesis in hypoxia using imaging. Click-chemistry labeling of RNA has not previously been performed under hypoxia and allows visualization of global RNA changes at the single cell level. This approach complements the existing averaged RNA techniques, allowing direct visualization of cell-to-cell changes in global RNA synthesis.

image

Biology

siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
John S. Bett 1, Adel F. M. Ibrahim 1, Amit K. Garg 1, Sonia Rocha 2, Ronald T. Hay 1,2
1MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, 2Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee

Here, we describe a methodology to perform a targeted siRNA “ubiquitome” screen to identify novel ubiquitin and ubiquitin-like regulators of the HIF1A-mediated cellular response to hypoxia.  This can be adapted to any biological pathway where a robust read out of reporter activity is available.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved