A model of stent implantation in mouse carotid artery is described. Compared to other similar methods, this procedure is very rapid, simple and accessible, offering the possibility to study in a convenient way the vascular wall reaction to different drug-eluting stents and the molecular mechanisms of restenosis.
A highly reproducible model for myocardial infarction in mice with minimal invasive manipulations is described. The model can be easily performed, resulting in a high reproducibility and survival rate. Thus, the described model will reduce the number of required animals as requested by the 3R principle (Replacement, Refinement and Reduction).
This study describes an invasive procedure for the induction of accelerated atherosclerosis in mice. In comparison to other methods using electric- or cryo-induced injury, mechanical-induced injury mimics the human condition of restenosis after revascularization therapies and is ideal for the study of the molecular mechanisms involved.
This protocol describes the implantation of human coronary stents into the abdominal aorta of rats with an apoE-/- background using a trans-femoral access. Compared with other animal models, murine models carry the advantages of high throughput, reproducibility, ease of handling and housing, and a broad availability of molecular markers.