Accedi

Wolff–Kishner reduction involves converting aldehydes and ketones to alkanes using hydrazine and a base. The reaction converts a carbonyl group to a methylene group. The method was independently discovered by N. Kishner in 1911 and L. Wolff in 1912. The reduction is carried out in high-boiling solvents such as ethylene glycol and diethylene glycol because heat is required to deprotonate the N–H proton in one of the reaction steps.

Wolff–Kishner reduction involves two key stages, including the formation ofan imine derivative, hydrazone, through a series of steps and the loss of N2. The mechanism involves multiple proton transfer reactions forming an N=N bond. The final steps include the transfer of a proton from nitrogen, a rearrangement reaction to form a carbanion with a subsequent loss of N2, and a proton transfer to the carbanion to give the final product—alkane.

Figure1

Tags

Aldehydes And Ketones To Alkanes Wolff Kishner ReductionWolff Kishner ReductionImineHydrazoneN N BondProton TransferCarbanionN2 LossAlkane

PLAYLIST

Loading...
JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati