Accedi

When a wave travels from one medium to another, it gets reflected at the boundary of the second medium. A common example of this is when a person yells at a distance from a cliff and hears the echo of their voice. The sound waves (longitudinal waves) traveling in the air are reflected from the bounding cliff. Similarly, flipping one end of a string whose other end is tied to a wall causes a pulse (transverse wave) to travel through the string, which gets reflected upon reaching the wall. In this case, the tied end acts as the boundary of the wave, which is not free to move with the oscillations.

Recall Newton's third law of motion, which states that every action has an equal and opposite reaction. As the incident wave encounters the wall, the string exerts an upward force on the wall, and the wall reacts by exerting an equal and opposite force on the string. Thus, in the case of reflection at a fixed boundary, a crest becomes a trough after reflection and vice versa.

If, however, the boundary is not fixed, and is free to move with the wave's oscillations, the phase of the reflected wave does not get inverted. For example, if the string is tied to a solid ring capable of sliding along a frictionless pole, the end of the string is free to move up and down. The wave encounters the free boundary applying an upward force on the ring, moving the ring up. The ring travels up to the maximum height equal to the amplitude of the wave and then accelerates down toward the equilibrium position due to the tension in the string. Thus, if the incident wave were a trough, the reflected wave would also be a trough in the case of a free boundary.

This text is adapted from Openstax, University Physics Volume 1, Section 16.5: Interference of Waves.

Tags
Wave ReflectionMedium BoundarySound WavesLongitudinal WavesTransverse WaveNewton s Third LawFixed BoundaryFree BoundaryWave Phase InversionIncident WaveReflected WaveOscillationsAmplitudeEquilibrium Position

Dal capitolo 16:

article

Now Playing

16.11 : Reflection of Waves

Waves

3.6K Visualizzazioni

article

16.1 : Onde in viaggio

Waves

4.8K Visualizzazioni

article

16.2 : Parametri dell'onda

Waves

5.7K Visualizzazioni

article

16.3 : Equazioni del moto ondoso

Waves

4.0K Visualizzazioni

article

16.4 : Rappresentazione grafica della funzione d'onda

Waves

1.5K Visualizzazioni

article

16.5 : Velocità e accelerazione di un'onda

Waves

3.7K Visualizzazioni

article

16.6 : Velocità di un'onda trasversale

Waves

1.4K Visualizzazioni

article

16.7 : Risoluzione dei problemi: accordatura di una corda di chitarra

Waves

362 Visualizzazioni

article

16.8 : Energia cinetica e potenziale di un'onda

Waves

3.4K Visualizzazioni

article

16.9 : Energia e potenza di un'onda

Waves

3.3K Visualizzazioni

article

16.10 : Interferenza e sovrapposizione delle onde

Waves

4.6K Visualizzazioni

article

16.12 : Propagazione delle onde

Waves

2.2K Visualizzazioni

article

16.13 : Onde stazionarie

Waves

2.9K Visualizzazioni

article

16.14 : Modalità delle onde stazionarie - I

Waves

2.8K Visualizzazioni

article

16.15 : Modalità delle onde stazionarie: II

Waves

778 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati