Accedi

Anemometria a temperatura costante: uno strumento per studiare il flusso turbolento dello strato limite

Panoramica

Fonte: Xiaofeng Liu, Jose Roberto Moreto e Jaime Dorado, Dipartimento di Ingegneria Aerospaziale, San Diego State University, San Diego, California

Uno strato limite è una sottile regione di flusso immediatamente adiacente alla superficie di un corpo solido immerso nel campo di flusso. In questa regione, gli effetti viscosi, come lo stress da taglio viscoso, dominano e il flusso è ritardato a causa dell'influenza dell'attrito tra il fluido e la superficie solida. Al di fuori dello strato limite, il flusso è inviscido, cioè non ci sono effetti dissipativi dovuti all'attrito, alla conduzione termica o alla diffusione di massa.

Il concetto di strato limite fu introdotto da Ludwig Prandtl nel 1904, che consente una significativa semplificazione dell'equazione di Navier-Stokes (NS) per il trattamento del flusso su un corpo solido. All'interno dello strato limite, l'equazione NS è ridotta all'equazione dello strato limite, mentre al di fuori dello strato limite, il flusso può essere descritto dall'equazione di Eulero, che è una versione semplificata dell'equazione NS.

Figura 1. Sviluppo dello strato limite su una piastra piana.

Il caso più semplice per lo sviluppo dello strato limite si verifica su una piastra piana con angolo di incidenza zero. Quando si considera lo sviluppo dello strato limite su una piastra piana, la velocità al di fuori dello strato limite è costante in modo che il gradiente di pressione lungo la parete sia considerato pari a zero.

Lo strato limite, che si sviluppa naturalmente su una superficie corporea solida, subisce tipicamente le seguenti fasi: in primo luogo, lo stato dello strato limite laminare; in secondo luogo, lo stato di transizione e in terzo luogo, lo stato turbolento dello strato limite. Ogni stato ha la propria legge (s) che descrive la struttura del flusso dello strato limite.

La ricerca sullo sviluppo e la struttura dello strato limite è di grande importanza sia per lo studio teorico che per le applicazioni pratiche. Ad esempio, la teoria dello strato limite è la base per calcolare la resistenza all'attrito della pelle su navi, aerei e pale di turbomacchine. La resistenza all'attrito cutaneo si crea sulla superficie corporea all'interno dello strato limite ed è dovuta allo sforzo di taglio viscoso esercitato sulla superficie attraverso particelle fluide a diretto contatto con esso. L'attrito cutaneo è proporzionale alla viscosità del fluido e al gradiente di velocità locale sulla superficie nella direzione normale della superficie. La resistenza all'attrito della pelle è presente su tutta la superficie, quindi diventa significativa su vaste aree, come l'ala di un aeroplano. Inoltre, il flusso di fluido turbolento crea una maggiore resistenza all'attrito della pelle. Il moto del fluido macro-turbolento migliora il trasferimento del momento all'interno dello strato limite portando particelle fluide con elevata quantità di moto verso la superficie.

Questa dimostrazione si concentra sullo strato limite turbolento su una piastra piana, in cui il flusso è irregolare, come nella miscelazione o nell'eddying, e le fluttuazioni sono sovrapposte al flusso medio. Quindi, la velocità in qualsiasi punto di uno strato limite turbolento è una funzione del tempo. In questa dimostrazione, l'anemometria a filo caldo a temperatura costante, o CTA, verrà utilizzata per condurre un'indagine a livello limite. Quindi, il metodo del grafico di Clauser verrà utilizzato per calcolare il coefficiente di attrito della pelle in uno strato limite turbolento.

Procedura

1. Determinazione della risposta dinamica del sistema a filo caldo

Lo scopo di questa procedura è capire quanto velocemente il sistema anemometro può rispondere alle variazioni del segnale di flusso. Questa capacità viene misurata misurando la risposta in frequenza quando il segnale si accende e si spegne applicando un'onda quadra.

  1. Fissare la sonda a filo caldo del sistema CTA all'interno di una galleria del vento utilizzando un albero di supporto.
  2. Impostar

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

Il CTA è stato calibrato nella sezione 2 del protocollo misurando la tensione del filo caldo a diverse velocità dell'aria. Questi dati sono stati quindi utilizzati per determinare la relazione matematica tra la variabile misurata, la tensione, e la variabile indiretta, la velocità dell'aria. Esistono molti approcci per adattare i dati sperimentali alle relazioni matematiche per la velocità, molti dei quali sono trattati nell'appendice. Dopo aver determinato la relazione matematica, la...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Vai a...

0:01

Concepts

3:05

CTA Dynamic Response Determination

4:44

CTA Calibration

6:07

Boundary Layer Survey

7:23

Results

Video da questa raccolta:

article

Now Playing

Anemometria a temperatura costante: uno strumento per studiare il flusso turbolento dello strato limite

Aeronautical Engineering

7.1K Visualizzazioni

article

Prestazioni aerodinamiche di un aeromodello: il DC-6B

Aeronautical Engineering

8.0K Visualizzazioni

article

Caratterizzazione dell'elica: variazioni di passo, diametro e numero di pale sulle prestazioni

Aeronautical Engineering

25.8K Visualizzazioni

article

Comportamento del profilo alare: distribuzione della pressione su un'ala Clark Y-14

Aeronautical Engineering

20.5K Visualizzazioni

article

Clark Y-14 Wing Performance: implementazione di dispositivi ad alto sollevamento (flap e lamelle)

Aeronautical Engineering

13.0K Visualizzazioni

article

Metodo della sfera di turbolenza: valutazione della qualità del flusso nella galleria del vento

Aeronautical Engineering

8.5K Visualizzazioni

article

Flusso cilindrico incrociato: misurazione della distribuzione della pressione e stima dei coefficienti di resistenza

Aeronautical Engineering

15.8K Visualizzazioni

article

Analisi degli ugelli: variazioni del numero di Mach e della pressione lungo un ugello convergente e un ugello convergente-divergente

Aeronautical Engineering

37.5K Visualizzazioni

article

Schlieren Imaging: una tecnica per visualizzare le caratteristiche del flusso supersonico

Aeronautical Engineering

10.5K Visualizzazioni

article

Visualizzazione del flusso in un tunnel d'acqua: osservazione del vortice di estremità su un'ala delta

Aeronautical Engineering

7.6K Visualizzazioni

article

Visualizzazione del flusso di colorante superficiale: un metodo qualitativo per osservare le linee di flusso nel flusso supersonico

Aeronautical Engineering

4.8K Visualizzazioni

article

Tubo Pitot-statico: un dispositivo per misurare la velocità del flusso d'aria

Aeronautical Engineering

47.9K Visualizzazioni

article

Trasduttore di pressione: calibrazione mediante tubo statico Pitot

Aeronautical Engineering

8.4K Visualizzazioni

article

Controllo di volo in tempo reale: calibrazione del sensore incorporato e acquisizione dati

Aeronautical Engineering

9.9K Visualizzazioni

article

Aerodinamica multirotore: caratterizzazione della spinta su un esacottero

Aeronautical Engineering

9.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati