Accedi

Visualizzazione della degenerazione dell'articolazione del ginocchio dopo lesione del LCA non invasiva nei ratti

Panoramica

Fonte: Lindsey K. Lepley1,2, Steven M. Davi1, Timothy A. Butterfield3,4 e Sina Shahbazmohamadi5,

1 Dipartimento di Kinesiologia, Università del Connecticut, Storrs, CT; 2 Dipartimento di Chirurgia Ortopedica, University of Connecticut Health Center, Farmington, CT; 3 Dipartimento di Scienze della Riabilitazione, Università del Kentucky, Lexington, KY; 4 Centro di Biologia Muscolare, Dipartimento di Fisiologia, Università del Kentucky, Lexington, KY; 5 Dipartimento di Ingegneria Biomedica, Università del Connecticut, Storrs, CT

La lesione del legamento crociato anteriore (ACL) al ginocchio aumenta drasticamente il rischio di osteoartrite post-traumatica (PTOA), poiché circa un terzo degli individui dimostrerà PTOA radiografica entro la prima decade dopo la lesione del LCA. Sebbene la ricostruzione del LCA (ACLR) ripristini con successo la stabilità dell'articolazione del ginocchio, l'ACLR e le attuali tecniche di riabilitazione non impediscono l'insorgenza della PTOA. Pertanto, la lesione ACL rappresenta il modello ideale per studiare lo sviluppo della PTOA dopo una lesione traumatica dell'articolazione.

I modelli di ratto sono stati ampiamente utilizzati per studiare l'insorgenza e l'effetto della lesione del LCA sulla PTOA. Il modello più utilizzato di lesione ACL è la transezione ACL, che è un modello acuto che destabilizza chirurgicamente l'articolazione. Sebbene pratico, questo modello non imita fedelmente le lesioni ACL umane a causa delle procedure di lesione invasive e non fisiologiche che mascherano la risposta biologica nativa alla lesione. Per migliorare la traduzione clinica dei nostri risultati, abbiamo recentemente sviluppato un nuovo modello non invasivo di danno ACL in cui l'ACL viene rotto attraverso un singolo carico di compressione tibiale. Questa lesione replica da vicino le condizioni di lesione rilevanti per l'uomo ed è altamente riproducibile.

La visualizzazione della degenerazione articolare attraverso la tomografia micro-computerizzata (μCT) fornisce diversi importanti progressi rispetto alle tradizionali tecniche di colorazione OA, tra cui l'imaging 3D rapido, ad alta risoluzione e non distruttivo della degenerazione dell'intera articolazione. L'obiettivo di questa dimostrazione è quello di introdurre lo stato dell'arte della lesione ACL non invasiva in un modello di roditore e utilizzare μCT per quantificare la degenerazione dell'articolazione del ginocchio.

Procedura

Lesione ACL non invasiva

  1. Indossare adeguati dispositivi di protezione individuale. È possibile utilizzare una maschera respiratoria, ma non è obbligatoria per questo protocollo.
  2. Anestetizzare i ratti utilizzando una camera di induzione con il 5% di isoflurano e 1 L/min di ossigeno. Mantenere il flusso dell'anestesia utilizzando tramite un cono nasale con 1 - 3% di isoflurano e 500 ml / min di ossigeno. Se l'apparecchio non è impostato su una tavola di backdraft o downdraft, assicurarsi che i gas di sc

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

Un numero trabecolare più piccolo, uno spessore trabecolare ridotto e una maggiore spaziatura trabecolare, tutte caratteristiche distintive dell'insorgenza della PTOA, erano evidenti 4 settimane dopo lo strappo del LCA non invasivo (Tabella 1 e Figura 3). Un'immagine di un LCA sezionato di un arto sano rispetto a un arto ferito acuto è mostrata nella Figura 5. Il nuovo modello non invasivo di lesione del LCA, i..

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Riferimenti
  1. Maerz T, Kurdziel MD, Davidson AA, Baker KC, Anderson K, Matthew HW. Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat. Ann Biomed Eng. 2015;43(10):2467-2476.
  2. Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JH, Haudenschild DR. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2012;20(7):773-782.
  3. Lockwood KA, Chu BT, Anderson MJ, Haudenschild DR, Christiansen BA. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis. J Orthop Res. 2014;32(1):79-88.
  4. Blair-Levy JM, Watts CE, Fiorentino NM, Dimitriadis EK, Marini JC, Lipsky PE. A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum. 2008;58(4):1096-1106.
  5. Mohan G, Perilli E, Kuliwaba JS, Humphries JM, Parkinson IH, Fazzalari NL. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res Ther. 2011;13(6):R210.
  6. Jones MD, Tran CW, Li G, Maksymowych WP, Zernicke RF, Doschak MR. In vivo microfocal computed tomography and micro-magnetic resonance imaging evaluation of antiresorptive and antiinflammatory drugs as preventive treatments of osteoarthritis in the rat. Arthritis Rheum. 2010;62(9):2726-2735.
Tags
Knee Joint DegenerationNon invasive ACL InjuryRatsAnterior Cruciate LigamentACL TearPost traumatic OsteoarthritisPTOARat ModelsACL TransectionLigament RepairBiomedical EngineeringFemurPatellaTibiaConnective TissueLigamentsKnee Stability

Vai a...

0:07

Overview

1:10

Principles of ACL Joint Injury

3:26

Novel Non-invasive ACL Injury

5:29

Micro-CT Imaging of Joint Degeneration

8:13

Results

9:08

Applications

10:45

Summary

Video da questa raccolta:

article

Now Playing

Visualizzazione della degenerazione dell'articolazione del ginocchio dopo lesione del LCA non invasiva nei ratti

Biomedical Engineering

8.1K Visualizzazioni

article

Imaging di campioni biologici con microscopia ottica e confocale

Biomedical Engineering

35.4K Visualizzazioni

article

Imaging di campioni biologici con microscopio elettronico a scansione (SEM)

Biomedical Engineering

23.3K Visualizzazioni

article

Biodistribuzione dei vettori di nanofarmaci: applicazioni del microscopio elettronico a scansione (SEM)

Biomedical Engineering

9.2K Visualizzazioni

article

Imaging a ultrasuoni ad alta frequenza dell'aorta addominale

Biomedical Engineering

14.2K Visualizzazioni

article

Mappatura quantitativa della deformazione di un aneurisma dell'aorta addominale

Biomedical Engineering

4.6K Visualizzazioni

article

Tomografia fotoacustica per l'immagine di sangue e lipidi nell'aorta infrarenale

Biomedical Engineering

5.6K Visualizzazioni

article

Imaging a risonanza magnetica cardiaca

Biomedical Engineering

14.5K Visualizzazioni

article

Simulazioni fluidodinamiche computazionali del flusso sanguigno in un aneurisma cerebrale

Biomedical Engineering

11.5K Visualizzazioni

article

Imaging a fluorescenza nel vicino-infrarosso di aneurismi dell'aorta addominale

Biomedical Engineering

8.2K Visualizzazioni

article

Tecniche non invasive di misurazione della pressione sanguigna

Biomedical Engineering

11.7K Visualizzazioni

article

Acquisizione e analisi di un segnale ECG (elettrocardiogramma)

Biomedical Engineering

101.7K Visualizzazioni

article

Resistenza alla trazione dei biomateriali riassorbibili

Biomedical Engineering

7.4K Visualizzazioni

article

Imaging micro-CT di un midollo spinale di topo

Biomedical Engineering

7.9K Visualizzazioni

article

Imaging combinato SPECT e CT per la visualizzazione della funzionalità cardiaca

Biomedical Engineering

10.9K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati