A rapid, simple and cost-effective protocol for the generation of donor-derived multivirus-specific CTLs (rCTL) for infusion to allogeneic hematopoietic stem cell transplant (HSCT) recipients at risk of developing CMV, Adv or EBV infections. This manufacturing process is GMP-compliant and should ensure the broader implementation of T-cell immunotherapy beyond specialized centers.
Here we describe the first good manufacturing practice (GMP)-compliant method of producing virus-specific cytotoxic T lymphocytes (CTL) from umbilical cord blood, a source of predominantly naîve T cells.
We demonstrate the assembly and application of a molecular-scale device powered by a topoisomerase protein. The construct is a bio-molecular sensor which labels two major types of DNA breaks in tissue sections by attaching two different fluorophores to their ends.
The endogenous production of nitric oxide (NO) regulates a wide variety of biological functions. It is becoming increasingly clear that disruption or dysregulation of NO based signaling is involved in many human diseases. Methods to quantify relevant NO metabolites may provide novel diagnostic or prognostic biomarkers for human disease.
We describe a method to genetically modify primary human T cells with a transgene using the non-viral piggyBac transposon system. T cells modified to using the piggyBac transposon system exhibit stable transgene expression.
We describe hepatic neo-islet formation in STZ (streptozotocin)-induced diabetic mice by gene transfer of Neurogenin3 (Ngn3) and Betacellulin (Btc) using helper-dependent adenoviral vector (HDAd) and the reversal of hyperglycemia. Our method takes advantages of helper-dependent adenoviral vectors with their highly efficient in vivo transduction and the long lasting gene expression.
We present a new fluorescence technique for selective in situ labeling of active phagocytic cells, which clear off cell corpses in stroke. The approach is important for assessing brain reaction to ischemia because only a small proportion of phagocytes present in ischemic brain participate in clearance of cell death.
This protocol describes a method to inject plasmid DNA into the mouse kidney via the renal pelvis to produce transgene expression specifically in the kidney.
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved
当社はcookieを使用しています。
「続行」をクリックすることで、当社のcookieへの同意となります。