サインイン

Many proteins form complexes to carry out their functions, making protein-protein interactions (PPIs) essential for an organism's survival. Most PPIs are stabilized by numerous weak noncovalent chemical forces. The physical shape of the interfaces determines the way two proteins interact. Many globular proteins have closely-matching shapes on their surfaces, which form a large number of weak bonds. Additionally, many PPIs occur between two helices or between a surface cleft and a polypeptide chain or string.

Various computational and biochemical methods are used to study protein interfaces. Laboratory methods, such as affinity purification, mass spectrometry, and protein microarrays, can be used to identify new interactions. Co-immunoprecipitation of proteins and yeast two-hybrid screening are widely used to provide evidence on whether two proteins interact in vitro. Computer programs can predict PPIs based on similar interactions found in other proteins by comparing protein sequences and three-dimensional structures. Other computational approaches, such as phylogenetic profiling, predict PPIs based on the coevolution of binding partners. Additionally, gene fusion analysis is used to predict interaction partners by finding protein pairs that are fused in the genome of other organisms.

Proteins typically interact with multiple partners either at the same or different times, and they may contain more than one interaction interface. Many proteins form large complexes that perform specific functions that can only be carried out by the complete complex. In some cases, these protein interactions are regulated; that is, a protein may interact with different partners based on cellular needs. Further computational and statistical analyses sort such interactions into networks, which are curated in online interactome databases. These searchable databases enable users to study specific protein interactions, as well as design drugs that can enhance or disrupt interactions at the interface.

タグ
Protein protein InterfacesProtein ComplexesOligomersKinesin DimerCytoskeletal MicrotubulesAlpha tubulinBeta tubulinNon covalent BondsSurface surface InteractionLigand Binding SitesHydrophobic ForcesCovalent Disulfide BondsProtein Kinase ACleftPolypeptide LoopsSurface string InteractionHelix helix InteractionCoiled coil Interaction

章から 4:

article

Now Playing

4.2 : Protein-protein Interfaces

タンパク質の機能

12.4K 閲覧数

article

4.1 : リガンド結合部位

タンパク質の機能

12.5K 閲覧数

article

4.3 : 保存された結合部位

タンパク質の機能

4.1K 閲覧数

article

4.4 : 平衡結合定数と結合強度

タンパク質の機能

12.5K 閲覧数

article

4.5 : 補因子と補酵素

タンパク質の機能

7.1K 閲覧数

article

4.6 : アロステリックレギュレーション

タンパク質の機能

13.8K 閲覧数

article

4.7 : リガンド結合とリンケージ

タンパク質の機能

4.7K 閲覧数

article

4.8 : 協調的アロステリックトランジション

タンパク質の機能

7.8K 閲覧数

article

4.9 : リン酸化

タンパク質の機能

5.7K 閲覧数

article

4.10 : プロテインキナーゼとホスファターゼ

タンパク質の機能

12.7K 閲覧数

article

4.11 : GTPアーゼとその規制

タンパク質の機能

8.0K 閲覧数

article

4.12 : 共有結合タンパク質調節剤

タンパク質の機能

6.6K 閲覧数

article

4.13 : 交換可能な部品を持つタンパク質複合体

タンパク質の機能

2.5K 閲覧数

article

4.14 : 機械的タンパク質機能

タンパク質の機能

4.8K 閲覧数

article

4.15 : 構造タンパク質機能

タンパク質の機能

27.0K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved