サインイン

One of the unique features of tRNA is the presence of modified bases. In some tRNAs, modified bases account for nearly 20% of the total bases in the molecule. Altogether, these unusual bases protect the tRNA from enzymatic degradation by RNases.

Each of these chemical modifications is carried by a specific enzyme, post-transcription. All of these enzymes have unique base and site-specificity. Methylation, the most common chemical modification, is carried by at least nine different enzymes, with three enzymes dedicated for the methylation of Guanine at different positions.

The nature and position of these modified bases are species-specific. Thus, there are several bases that are exclusive to eukaryotes or prokaryotes. For instance, thiolation of Adenine is only observed in prokaryotes, whereas methylation of cytosine is restricted to eukaryotes. Overall, eukaryotic tRNAs are modified to a greater extent than those from prokaryotes.

Although the nature of modifications may vary, some regions of the tRNA are always heavily modified. Each of the three stem-loop regions or "arms"of the tRNA have modified bases that serve unique purposes. The TΨC arm, named after the presence of the nucleotides, thymine, pseudouridine and cytosine, is recognized by the ribosome during translation. The DHU or D arm that contains the modified pyrimidine dihydrouracilserves as a recognition site for the aminoacyl-tRNA synthetase enzyme, that catalyzes the covalent addition of an amino acid to the tRNA. The anticodon loop often has a queuine base, which is a modified guanine. This base creates a Wobble pair with the codon sequence on the mRNA, i.e. it forms a base pair that does not follow Watson-Crick base pair rules. Usually, a tRNA binds the mRNA more “loosely” in the third position of the codon. This allows several types of non-Watson–Crick base pairing or Wobble bases at the third codon position. It has been observed that the presence of queuinein the first position of the anticodon, which pairs with the third position of the codon, improves the translation accuracy of the tRNA.

タグ
Transfer RNA SynthesisTRNAsProtein SynthesisRNA Polymerase IIIPre tRNAPost transcriptional ProcessingMature TRNARibonuclease PRNase PExonuclease RNase DCCA Sequence

章から 8:

article

Now Playing

8.16 : Transfer RNA Synthesis

転写 DNAからRNAへ

11.6K 閲覧数

article

8.1 : 遺伝子発現とは?

転写 DNAからRNAへ

25.1K 閲覧数

article

8.2 : RNAの構造

転写 DNAからRNAへ

22.9K 閲覧数

article

8.3 : RNAの安定性

転写 DNAからRNAへ

10.3K 閲覧数

article

8.4 : 細菌RNAポリメラーゼ

転写 DNAからRNAへ

25.7K 閲覧数

article

8.5 : RNAの種類

転写 DNAからRNAへ

22.9K 閲覧数

article

8.6 : 転写

転写 DNAからRNAへ

33.7K 閲覧数

article

8.7 : 転写因子

転写 DNAからRNAへ

19.4K 閲覧数

article

8.8 : 真核生物RNAポリメラーゼ

転写 DNAからRNAへ

21.0K 閲覧数

article

8.9 : RNAポリメラーゼIIアクセサリータンパク質

転写 DNAからRNAへ

8.9K 閲覧数

article

8.10 : 転写伸長因子

転写 DNAからRNAへ

10.5K 閲覧数

article

8.11 : プレmRNAプロセシング

転写 DNAからRNAへ

24.0K 閲覧数

article

8.12 : RNAスプライシング

転写 DNAからRNAへ

16.7K 閲覧数

article

8.13 : クロマチン構造によるpre mRNAプロセッシングの制御

転写 DNAからRNAへ

6.8K 閲覧数

article

8.14 : mRNAの核外輸送

転写 DNAからRNAへ

7.4K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved