サインイン

Transcriptional regulators bind to specific cis-regulatory sequences in theDNA to regulate gene transcription. These cis-regulatory sequences are very short, usually less than ten nucleotide pairs in length. The short length means that there is a high probability of the exact same sequence randomly occurring throughout the genome. Since regulators can also bind to groups of similar sequences, this further increases the chances of random binding. Transcriptional regulators form dimers that bind to a sequence twice as long as a monomer binds, increasing the sequences and reducing the chances of random binding. Transcription regulator dimers can be homodimers or heterodimers. In solution, these cooperative regulators exist either as monomers or weakly linked dimers. However, when these monomers bind to an extended cis-regulatory sequence on the DNA, they form stable dimers.

Cooperativity is a phenomenon where the binding of a monomeric protein causes structural changes to the DNA and increases the regulatory sites’ affinity for other monomers. This enables the monomers to bind as dimers on the cis-regulatory sequence. This phenomenon also helps regulators access sites located on DNA that is tightly bound to histone proteins in the nucleosome, which would otherwise be inaccessible. The first binding usually occurs at the DNA at the end of the nucleosome, where it is not tightly bound. Binding at this site leads to the DNA moving away from the histones, thereby leading to the unpacking of the nucleosome. This unpacking increases access to the other regulatory sites. In eukaryotes, transcription factor binding predominantly depends on cooperativity. Although cooperativity can occur in some cases, most of the binding of transcriptional regulators in prokaryotes is non-cooperative. In such cases, the regulators exist as stable dimers held together by several non-covalent interactions.

Whether an unknown regulator binds cooperatively or non-cooperatively can be determined by plotting the number of occupied binding sites on the DNA against the protein concentration. If the plot is an S-shaped curve, it indicates that the regulator binds cooperatively to the binding sites. If the curve rises steadily before leveling off as it approaches all of the binding sites being occupied, it indicates that binding is non-cooperative.

タグ

Cooperative BindingTranscription RegulatorsCis regulatory SequencesDimer PairBinding SpecificityHomodimerHeterodimerMonomersDNA BindingCooperative RegulatorsNon covalent Interactions

章から 10:

article

Now Playing

10.4 : Cooperative Binding of Transcription Regulators

遺伝子発現

6.1K 閲覧数

article

10.1 : 細胞特異的遺伝子発現

遺伝子発現

13.1K 閲覧数

article

10.2 : 発現の調節は複数のステップで行われます

遺伝子発現

21.7K 閲覧数

article

10.3 : シス制御配列

遺伝子発現

9.4K 閲覧数

article

10.5 : 原核生物の転写活性化因子および抑制因子

遺伝子発現

20.1K 閲覧数

article

10.6 : オペロン

遺伝子発現

15.0K 閲覧数

article

10.7 : 真核生物プロモーター領域

遺伝子発現

15.8K 閲覧数

article

10.8 : コアクチベーターとコリプレッサー

遺伝子発現

7.0K 閲覧数

article

10.9 : 真核生物転写活性化剤

遺伝子発現

10.6K 閲覧数

article

10.10 : 真核生物転写阻害剤

遺伝子発現

9.6K 閲覧数

article

10.11 : コンビナトリアル遺伝子制御

遺伝子発現

8.1K 閲覧数

article

10.12 : 人工多能性幹細胞

遺伝子発現

3.4K 閲覧数

article

10.13 : 転写レギュレーターのマスター

遺伝子発現

6.6K 閲覧数

article

10.14 : エピジェネティックな制御

遺伝子発現

24.0K 閲覧数

article

10.15 : ゲノムインプリンティングと遺伝

遺伝子発現

32.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved