サインイン

ATP synthase or ATPase is among the most conserved proteins found in bacteria, mammals, and plants. This enzyme can catalyze a forward reaction in response to the electrochemical gradient, producing ATP from ADP and inorganic phosphate. ATP synthase can also work in a reverse direction by hydrolyzing ATP and generating an electrochemical gradient. Different forms of ATP synthases have evolved special features to meet the specific demands of the cell. Based on their specific feature, ATP synthases are classified as F (Phosphorylation factor), V (Vacuole), A (Archaea), P (Proton), or E (Extracellular). The mammalian ATP synthase is also known as the complex five of the respiratory chain complexes in the inner mitochondrial membrane.

It has been estimated that an average adult body produces 40 kg of ATP every day. Therefore, ATP synthesis is one of the most crucial and frequent processes that occur in the body.

Any mutation or defects in the ATP synthase enzyme can lead to fatal diseases. Mutation in one or more subunits of ATP synthase can inhibit their assembly into a functional enzyme. Consequently, this can lead to congenital defects such as cardiomyopathy, hepatomegaly, and lactic acidosis, causing the death of a newborn. Further, a mutation in the α subunit has been associated with several pathologies including, retinitis pigmentosa, neuropathy, familial bilateral striatal necrosis, and one type of Leigh syndrome, which is a neuromuscular disorder in young children. Also, the reduced expression of the β subunit and accumulation of α subunit in the cytosol can cause Alzheimer's disease.

タグ
ATP SynthaseATPaseConserved ProteinsEnzymeElectrochemical GradientATP ProductionADP And Inorganic PhosphateReverse ReactionHydrolyzing ATPSpecial FeaturesCell DemandsClassification Of ATP SynthasesMammalian ATP SynthaseRespiratory Chain ComplexesMitochondrial MembraneATP SynthesisMutationDefects In ATP Synthase EnzymeFatal DiseasesCongenital DefectsCardiomyopathyHepatomegalyLactic AcidosisNewborn DeathRetinitis PigmentosaNeuropathyFamilial Bilateral Striatal NecrosisLeigh Syndrome

章から 19:

article

Now Playing

19.11 : ATP Synthase: Structure

ミトコンドリアとエネルギー生産

11.6K 閲覧数

article

19.1 : ミトコンドリア

ミトコンドリアとエネルギー生産

8.8K 閲覧数

article

19.2 : ミトコンドリア膜

ミトコンドリアとエネルギー生産

6.5K 閲覧数

article

19.3 : ミトコンドリア内膜

ミトコンドリアとエネルギー生産

3.1K 閲覧数

article

19.4 : クエン酸回路:概要

ミトコンドリアとエネルギー生産

15.5K 閲覧数

article

19.5 : クエン酸回路:出力

ミトコンドリアとエネルギー生産

7.1K 閲覧数

article

19.6 : 電子伝達鎖:錯体IおよびII型

ミトコンドリアとエネルギー生産

9.4K 閲覧数

article

19.7 : 電子伝達系:複合体IIIおよびIV

ミトコンドリアとエネルギー生産

6.5K 閲覧数

article

19.8 : ATPシンターゼ:メカニズム

ミトコンドリアとエネルギー生産

13.3K 閲覧数

article

19.9 : 電子伝達系

ミトコンドリアとエネルギー生産

15.5K 閲覧数

article

19.10 : クリスタ膜のスーパーコンプレックス

ミトコンドリアとエネルギー生産

2.4K 閲覧数

article

19.12 : ADP/ATPキャリアタンパク質

ミトコンドリアとエネルギー生産

3.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved