サインイン

Mitochondrial protein import is powered by two distinct energy sources: ATP hydrolysis and electrochemical potential across the inner membrane. Newly synthesized precursors are bound by cytosolic chaperones of the Hsp70 family, which guide them to the import receptors on the mitochondrial surface. Utilizing the energy of ATP hydrolysis, Hsp70 chaperones transfer these precursors to the TOM receptors on the mitochondrial outer membrane.

Generally, polypeptides are unfolded by two distinct mechanisms before being transported in the TOM/TIM import pathway: spontaneous global unfolding and catalyzed unfolding. Precursors with shorter presequences undergo spontaneous global unfolding. In contrast, precursors with longer positively charged presequences undergo local unfolding. The unstructured presequence then traverses the TOM/TIM import complexes and interacts with the inner membrane’s negative charges to reach the matrix. Mitochondrial Hsp70 (mtHsp70) associated with TIM44 recognizes the emerging polypeptide and translocates it entirely into the matrix by accelerating the unfolding process. mtHsp70 also traps any incoming loosely folded precursors without undergoing any conformational change and translocates them to the matrix without undergoing any conformational change.

In contrast, the translocation of tightly folded polypeptides induces ATP-dependent conformational changes in mtHsp70. mtHsp70 utilizes the ATP hydrolysis energy to pull the incoming peptide across the TIM translocase. Rebinding of ATP causes the opening of mtHsp70, and the precursor gets released into the matrix.

Two models can describe precursor translocation by the mtHsp70: the thermal ratchet model and the cross-bridge ratchet model. MtHsp70 translocates precursors by trap and release mechanism in the thermal ratchet model. mtHsp70 uses the ATP hydrolysis energy to bind the spontaneously unfolded precursors and trap them into the matrix, preventing further backward movement. In contrast, translocation by cross-bridge ratchet mechanism involves precursor unfolding coupled to an ATP-dependent conformational change of mtHsp70. mtHsp70 generates an ATP-dependent pulling force to transport precursors into the matrix. Accelerated precursor unfolding facilitates its unidirectional forward movement and transport into the matrix.

タグ
TranslocationMitochondrial Protein ImportATP HydrolysisElectrochemical PotentialInner MembraneCytosolic ChaperonesHsp70 FamilyImport ReceptorsTOM ReceptorsPolypeptidesTOM TIM Import PathwayGlobal UnfoldingCatalyzed UnfoldingPresequencesMatrixMitochondrial Hsp70 mtHsp70TIM44ATP dependent Conformational Changes

章から 16:

article

Now Playing

16.11 : Energy to Drive Translocation

細胞内コンパートメントとタンパク質の選別

2.0K 閲覧数

article

16.1 : タンパク質のソーティングと輸送の概要

細胞内コンパートメントとタンパク質の選別

10.0K 閲覧数

article

16.2 : シグナル配列とソーティングレセプター

細胞内コンパートメントとタンパク質の選別

4.9K 閲覧数

article

16.3 : 核タンパク質の選別

細胞内コンパートメントとタンパク質の選別

4.2K 閲覧数

article

16.4 : 核局在化シグナルとインポート

細胞内コンパートメントとタンパク質の選別

5.2K 閲覧数

article

16.5 : 原子力輸出

細胞内コンパートメントとタンパク質の選別

3.5K 閲覧数

article

16.6 : 原子力輸送の方向性

細胞内コンパートメントとタンパク質の選別

2.9K 閲覧数

article

16.7 : 核タンパク質選別制御

細胞内コンパートメントとタンパク質の選別

2.3K 閲覧数

article

16.8 : ミトコンドリアタンパク質の選別

細胞内コンパートメントとタンパク質の選別

4.0K 閲覧数

article

16.9 : ミトコンドリア前駆体タンパク質

細胞内コンパートメントとタンパク質の選別

2.4K 閲覧数

article

16.10 : タンパク質のミトコンドリアへの転座

細胞内コンパートメントとタンパク質の選別

2.9K 閲覧数

article

16.12 : ポリンズの構造

細胞内コンパートメントとタンパク質の選別

2.8K 閲覧数

article

16.13 : ミトコンドリア外膜へのポリン挿入

細胞内コンパートメントとタンパク質の選別

2.6K 閲覧数

article

16.14 : ミトコンドリア内膜へのタンパク質輸送

細胞内コンパートメントとタンパク質の選別

3.5K 閲覧数

article

16.15 : チラコイドへのタンパク質輸送

細胞内コンパートメントとタンパク質の選別

2.2K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved