サインイン

Polymerization generates chiral centers along the entire backbone of a polymer chain. Accordingly, the stereochemistry of the substituent group has a significant effect on polymer properties. Polymers formed from monosubstituted alkene monomers feature chiral carbons at every alternate position in the polymer backbone. Relative to the predominant orientation of substituents at the adjacent chiral carbons, the polymer can exist in three different configurations: isotactic, syndiotactic, and atactic.

In the isotactic configuration, the substituents are generally positioned on the same side of the polymer backbone. In the syndiotactic configuration, the substituents periodically alternate on both sides of the polymer chain. In the atactic configuration, the substituents orient randomly. Figure 1 depicts the comparison of substituents’ arrangement in the isotactic, syndiotactic, and atactic polypropylene polymer chains.

Figure1

Figure 1: Structural configurations of isotactic polypropylene (top), syndiotactic polypropylene (middle), and atactic polypropylene (bottom) chains.

The more regular arrangement of substituents in isotactic and syndiotactic configurations facilitates the close-packing of polymer chains and increases the polymer's density, crystallinity, and melt transition temperature. On the other hand, an increase in the fraction of the atactic configuration makes loosely bound polymer chains, which reduces the density and crystallinity of the polymer.

For example, the melting temperature for commercial isotactic polypropylene is 160 to 170 °C, depending on the quantity of atactic traces present, while for syndiotactic polypropylene, it is 125 to 131 °C. In contrast, atactic polypropylene is an amorphous rubbery material without a sharp melting point. So, control over the stereospecificity of polymer chains is important while synthesizing polypropylene for commercial applications, such as temperature-resistant tubes and bottles.

タグ
Polymer ClassificationStereochemistryChiral CentersIsotactic ConfigurationSyndiotactic ConfigurationAtactic ConfigurationPolypropylene ChainsPolymer PropertiesDensityCrystallinityMelt Transition TemperatureCommercial Applications

章から 21:

article

Now Playing

21.7 : Polymer Classification: Stereospecificity

合成ポリマー

2.3K 閲覧数

article

21.1 : ホモポリマーの特性と命名法

合成ポリマー

2.8K 閲覧数

article

21.2 : 共重合体の特性と命名法

合成ポリマー

2.3K 閲覧数

article

21.3 : ポリマー:分子量の定義

合成ポリマー

2.6K 閲覧数

article

21.4 : ポリマー:分子量分布

合成ポリマー

3.0K 閲覧数

article

21.5 : ポリマー分類:アーキテクチャ

合成ポリマー

2.5K 閲覧数

article

21.6 : ポリマー分類:結晶化度

合成ポリマー

2.7K 閲覧数

article

21.8 : ラジカル連鎖成長重合:概要

合成ポリマー

2.2K 閲覧数

article

21.9 : ラジカル連鎖成長重合:メカニズム

合成ポリマー

2.3K 閲覧数

article

21.10 : ラジカル鎖成長重合:鎖分岐

合成ポリマー

1.8K 閲覧数

article

21.11 : 陰イオン性連鎖成長重合:概要

合成ポリマー

2.0K 閲覧数

article

21.12 : 陰イオン性連鎖成長重合:メカニズム

合成ポリマー

1.9K 閲覧数

article

21.13 : カチオン性連鎖成長重合:メカニズム

合成ポリマー

2.1K 閲覧数

article

21.14 : Ziegler–Natta Chain-Growth Polymerization:概要

合成ポリマー

3.1K 閲覧数

article

21.15 : 逐次重合:概要

合成ポリマー

3.3K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved