サインイン

Membrane lipids such as phosphatidylinositol (PI) are precursors for several membrane-bound and soluble second messengers. Specific kinases phosphorylate PI and produce phosphorylated inositol phospholipids. One such inositol phospholipids are thephosphatidylinositol-4,5 bisphosphate [PI(4,5)P2], present in the inner half of the lipid bilayer. Upon ligand binding, GPCR stimulates Gq proteins to turn on phospholipase Cꞵ. Activated phospholipase Cꞵ cleaves PI(4,5)P2 and produces two-second messengers—amembrane-bound diacylglycerol (DAG) and a cytosolic inositol-1,4,5 trisphosphate (IP3). The events mediated by these second messengers are called IP3/DAG pathway.

IP3 is a sugar-phosphate molecule. They are soluble and can rapidly diffuse through the cytosol to reach the endoplasmic reticulum (ER). IP3 binds and opens IP3-gated calcium channels on the ER membrane and drives out calcium into the cytosol. This way, IP3 transmits an external signal by increasing the cytosolic concentration of another second messenger, like the calcium ions. IP3 triggers various cellular responses via elevating cytosolic calcium levels, including smooth muscle contraction in the blood vessels and platelet aggregation. However, IP3 also controls the rising cytosolic calcium levels. IP3 is rapidly degraded to inositol-1,4 bisphosphate, which cannot bind or open ER calcium channels. This prevents calcium release to the cytosol.

The second product, the membrane-bound second messenger DAG also plays an essential role in various cellular processes. They bind and activate protein kinase C (PKC), which is involved in cellular growth and metabolism. PKC phosphorylates multiple transcription factors, which move to the nucleus and initiate the transcription of genes involved in cell division.

DAG can also be cleaved to form arachidonic acid, a precursor for eicosanoids, a small lipid signal molecule. A commonly known eicosanoid, prostaglandin, affects pain and inflammatory responses. Many anti-inflammatory and pain-relieving drugs available commercially, like aspirin, ibuprofen, and cortisone, inhibit prostaglandins synthesis.

タグ
IP3DAGSignaling PathwayPhosphatidylinositolPhospholipase CGPCRCalcium ChannelsCytosolic ConcentrationProtein Kinase CTranscription FactorsArachidonic AcidEicosanoidsProstaglandinsCellular Responses

章から 22:

article

Now Playing

22.7 : IP3/DAG Signaling Pathway

Gタンパク質共役型受容体のシグナル伝達ネットワーク

10.9K 閲覧数

article

22.1 : G タンパク質共役型受容体

Gタンパク質共役型受容体のシグナル伝達ネットワーク

10.3K 閲覧数

article

22.2 : Gタンパク質の活性化と不活性化

Gタンパク質共役型受容体のシグナル伝達ネットワーク

6.2K 閲覧数

article

22.3 : GPCR脱感作

Gタンパク質共役型受容体のシグナル伝達ネットワーク

5.2K 閲覧数

article

22.4 : Gタンパク質依存性イオンチャネル

Gタンパク質共役型受容体のシグナル伝達ネットワーク

3.9K 閲覧数

article

22.5 : GPCRはアデニリルシラーゼ活性を調節します

Gタンパク質共役型受容体のシグナル伝達ネットワーク

4.9K 閲覧数

article

22.6 : cAMP依存性プロテインキナーゼ経路

Gタンパク質共役型受容体のシグナル伝達ネットワーク

5.7K 閲覧数

article

22.8 : カルシウム濃度のフィードバック制御

Gタンパク質共役型受容体のシグナル伝達ネットワーク

3.3K 閲覧数

article

22.9 : カルモジュリン依存性シグナル伝達

Gタンパク質共役型受容体のシグナル伝達ネットワーク

4.7K 閲覧数

article

22.10 : 一酸化窒素シグナル伝達経路

Gタンパク質共役型受容体のシグナル伝達ネットワーク

4.8K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved