サインイン

Confocal microscopy is an advanced microscopic technique. The prime advantage of the confocal microscope over other microscopy techniques is its ability to block the out-of-focus light from the illuminated samples using pinholes. It is widely used with fluorescence optics to obtain high-resolution, sharp contrast images. Unlike optical microscopes, confocal microscopes use a focused beam of light laser to scan the entire sample surface at different z-planes. These microscopes are, therefore, very useful for examining thick specimens such as biofilms, which can be examined alive and unfixed.

The confocal microscopes use two pinholes—illumination, and emission pinhole, to modulate the laser beam to obtain clear, crisp images. The laser passes through the illumination pinhole and gets reflected by the dichroic mirror to scan the sample surface. An emission pinhole confocal with the illumination plane; focuses the emitted light reaching the detector. It eliminates light from non-focused z-planes reaching the detector to obtain high contrast two-dimensional images called the optical sections. A computer software program then merges optical sections from different focal planes to reconstruct a three-dimensional image.

Two types of confocal microscope are widely used based on their method of scanning the samples; laser scanning (LSCM) and spinning disc laser (SDLM) microscopy. In LSCM, a point laser scans each focal plane across the sample and collects the emitted fluorescence through a pinhole in detectors. These two-dimensional images, called the optical sections, can be stacked to reconstruct the three-dimensional image. In contrast, SDLM consists of two linked spinning disks with hundreds of pinholes. It allows rapid scanning of the sample surface at different planes and faster image capturing.

Limitations of confocal microscopy

In confocal microscopy, the limited wavelengths of light in the lasers are a disadvantage. The traditional fluorescence microscopes offer a wide range of illumination wavelengths, using mercury or xenon arc lamps as their illumination sources. The high intensity of the laser in early confocal microscopes was damaging for the cells, which has been overcome to a great extent in the multiphoton microscope systems.

タグ
Confocal MicroscopyFluorescence OpticsHigh resolution ImagingOptical SectionsLaser Scanning MicroscopySpinning Disc Laser Microscopy3D Image ReconstructionBiofilms ExaminationIllumination PinholeEmission PinholeDichroic MirrorSample Scanning LimitationsMultiphoton Microscope Systems

章から 33:

article

Now Playing

33.6 : Confocal Fluorescence Microscopy

細胞、組織、分子の視覚化

12.5K 閲覧数

article

33.1 : 光学顕微鏡による生体サンプルのイメージング

細胞、組織、分子の視覚化

4.5K 閲覧数

article

33.2 : 位相コントラストおよび微分干渉コントラスト顕微鏡

細胞、組織、分子の視覚化

7.2K 閲覧数

article

33.3 : 固定と切片化

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.4 : 免疫蛍光顕微鏡

細胞、組織、分子の視覚化

9.5K 閲覧数

article

33.5 : 免疫細胞化学および免疫組織化学

細胞、組織、分子の視覚化

9.9K 閲覧数

article

33.7 : 生細胞におけるタンパク質動態

細胞、組織、分子の視覚化

2.0K 閲覧数

article

33.8 : 全反射蛍光顕微鏡

細胞、組織、分子の視覚化

5.5K 閲覧数

article

33.9 : 原子間力顕微鏡

細胞、組織、分子の視覚化

3.3K 閲覧数

article

33.10 : 超解像蛍光顕微鏡

細胞、組織、分子の視覚化

6.7K 閲覧数

article

33.11 : 電子顕微鏡の概要

細胞、組織、分子の視覚化

8.2K 閲覧数

article

33.12 : 走査型電子顕微鏡

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.13 : 透過型電子顕微鏡

細胞、組織、分子の視覚化

5.2K 閲覧数

article

33.14 : 電子顕微鏡用試料の調製

細胞、組織、分子の視覚化

5.2K 閲覧数

article

33.15 : イムノゴールド電子顕微鏡

細胞、組織、分子の視覚化

3.8K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved