サインイン

A scanning electron microscope (SEM) is used to study the surface features of a sample by using an electron beam that scans the sample surface in a two-dimensional manner. Typically, areas between ~1 centimeter to 5 micrometers in width can be imaged. SEM can be used to image bacteria, viruses, tissues as well as larger samples like insects. Conventional SEM gives a magnification ranging from 20X to 30,000X and spatial resolution of 50 to 100 nanometers.

Fundamental Principles

Accelerated electrons released by the electron gun have high kinetic energy (ranging from 5-30 keV). Electron-sample interactions lead to deceleration of the electrons and dissipation of the energy in the form of different signals. The electrons undergo two types of scattering: elastic and inelastic. Inelastic scattering causes the emission of secondary electrons. These low-energy electrons (~50 eV) are the outer shell electrons of the sample atoms that acquire just enough energy to leave the atom's surface. Only topographical information is provided by the scattering of secondary electrons since the energy level of the electrons leaving from the internal regions of the sample is too low to exit the sample surface.

X-rays are also generated by inelastic collisions of the incident electrons with electrons in discrete orbitals (shells) of atoms in the sample. As the excited electrons return to lower energy states, they yield X-rays of a fixed wavelength (related to the difference in energy levels of electrons in different shells for a given element). Thus, characteristic X-rays are produced for each element in a mineral excited by the electron beam.

Elastic scattering, on the other hand, is not caused by dislodged electrons from the sample atoms. The principal beam of electrons is backscattered after interaction with the nucleus. These electrons do not change their energy or speed but change their direction based on their interaction with the nucleus. Detection of these electrons provides compositional information, and their varying contrast upon interaction with atoms of different atomic weights allows the user to distinguish differences in sample composition. In biological samples, this can be used to study embedded or attached nanoparticles and nanostructures with heavier atomic weights, such as gold or iron.

タグ
Scanning Electron MicroscopySEMElectron BeamSurface FeaturesMagnificationSpatial ResolutionElectron sample InteractionsElastic ScatteringInelastic ScatteringSecondary ElectronsX raysCharacteristic X raysCompositional InformationBiological SamplesNanoparticlesNanostructures

章から 33:

article

Now Playing

33.12 : Scanning Electron Microscopy

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.1 : 光学顕微鏡による生体サンプルのイメージング

細胞、組織、分子の視覚化

4.5K 閲覧数

article

33.2 : 位相コントラストおよび微分干渉コントラスト顕微鏡

細胞、組織、分子の視覚化

7.2K 閲覧数

article

33.3 : 固定と切片化

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.4 : 免疫蛍光顕微鏡

細胞、組織、分子の視覚化

9.5K 閲覧数

article

33.5 : 免疫細胞化学および免疫組織化学

細胞、組織、分子の視覚化

9.9K 閲覧数

article

33.6 : 共焦点蛍光顕微鏡

細胞、組織、分子の視覚化

12.5K 閲覧数

article

33.7 : 生細胞におけるタンパク質動態

細胞、組織、分子の視覚化

2.0K 閲覧数

article

33.8 : 全反射蛍光顕微鏡

細胞、組織、分子の視覚化

5.5K 閲覧数

article

33.9 : 原子間力顕微鏡

細胞、組織、分子の視覚化

3.3K 閲覧数

article

33.10 : 超解像蛍光顕微鏡

細胞、組織、分子の視覚化

6.7K 閲覧数

article

33.11 : 電子顕微鏡の概要

細胞、組織、分子の視覚化

8.2K 閲覧数

article

33.13 : 透過型電子顕微鏡

細胞、組織、分子の視覚化

5.2K 閲覧数

article

33.14 : 電子顕微鏡用試料の調製

細胞、組織、分子の視覚化

5.2K 閲覧数

article

33.15 : イムノゴールド電子顕微鏡

細胞、組織、分子の視覚化

3.8K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved