サインイン

In 1931, physicist Ernst Ruska—building on the idea that magnetic fields can direct an electron beam just as lenses can direct a beam of light in an optical microscope—developed the first prototype of the electron microscope. This development led to the development of the field of electron microscopy. In the transmission electron microscope (TEM), electrons are produced by a hot tungsten element and accelerated by a potential difference in an electron gun, which gives them up to 400 keV in kinetic energy. After leaving the electron gun, the electron beam is focused by electromagnetic lenses (a system of condensing lenses) and transmitted through a specimen sample to be viewed. The image of the sample is reconstructed from the transmitted electron beam. The magnified image may be viewed either directly on a fluorescent screen or indirectly by sending it, for example, to a digital camera or a computer monitor.

The entire setup consisting of the electron gun, the lenses, the specimen, and the fluorescent screen are enclosed in a vacuum chamber to prevent energy loss from the beam. Modern high-resolution models of a TEM can have resolving power greater than 0.5 Å and magnifications higher than 50 million times. For comparison, the best resolving power obtained with light microscopy is currently about 97 nm.

A limitation of the TEM is that the samples must be about 100 nm thick, and biological samples require a special preparation involving chemical “fixing” to stabilize them for ultrathin slicing. To overcome the limitations, several advancements in TEM techniques, such as cryo-TEM, have been made to get rid of artifacts and allow for direct sample imaging without the sample-damaging stages of sample fixation and dehydration.

This text is adapted from Openstax, University Physics Volume 3, Chapter 6 Photons and Matter Waves, Section 6.6: Wave-Particle Duality.

タグ
Transmission Electron MicroscopyErnst RuskaElectron MicroscopeElectron BeamElectromagnetic LensesSpecimen SampleResolving PowerLight MicroscopyCryo TEMSample PreparationVacuum ChamberMagnification

章から 33:

article

Now Playing

33.13 : Transmission Electron Microscopy

細胞、組織、分子の視覚化

5.2K 閲覧数

article

33.1 : 光学顕微鏡による生体サンプルのイメージング

細胞、組織、分子の視覚化

4.5K 閲覧数

article

33.2 : 位相コントラストおよび微分干渉コントラスト顕微鏡

細胞、組織、分子の視覚化

7.2K 閲覧数

article

33.3 : 固定と切片化

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.4 : 免疫蛍光顕微鏡

細胞、組織、分子の視覚化

9.5K 閲覧数

article

33.5 : 免疫細胞化学および免疫組織化学

細胞、組織、分子の視覚化

9.9K 閲覧数

article

33.6 : 共焦点蛍光顕微鏡

細胞、組織、分子の視覚化

12.5K 閲覧数

article

33.7 : 生細胞におけるタンパク質動態

細胞、組織、分子の視覚化

2.0K 閲覧数

article

33.8 : 全反射蛍光顕微鏡

細胞、組織、分子の視覚化

5.5K 閲覧数

article

33.9 : 原子間力顕微鏡

細胞、組織、分子の視覚化

3.3K 閲覧数

article

33.10 : 超解像蛍光顕微鏡

細胞、組織、分子の視覚化

6.7K 閲覧数

article

33.11 : 電子顕微鏡の概要

細胞、組織、分子の視覚化

8.2K 閲覧数

article

33.12 : 走査型電子顕微鏡

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.14 : 電子顕微鏡用試料の調製

細胞、組織、分子の視覚化

5.2K 閲覧数

article

33.15 : イムノゴールド電子顕微鏡

細胞、組織、分子の視覚化

3.8K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved