Conventional electron microscopy (EM) involves dehydration, fixation, and staining of biological samples, which distorts the native state of biological molecules and results in several artifacts. Also, the high-energy electron beam damages the sample and makes it difficult to obtain high-resolution images. These issues can be addressed using cryo-EM, which uses frozen samples and gentler electron beams. The technique was developed by Jacques Dubochet, Joachim Frank, and Richard Henderson, for which they won the Nobel Prize in Chemistry in 2017.

X-ray diffraction and nuclear magnetic resonance (NMR) techniques are also used for obtaining high-resolution structures of biomolecules or studying their conformational changes. However, to get the X-ray structure, a molecule needs to be crystallized, which may not be possible every time. Even if a molecule is crystallizable, the crystallization process can alter its biomolecular structure, which is no longer representative of the native structure. Cryo-EM does not require a crystallized sample, and also enables visualization of molecular movements or interactions of biomolecules in their native state. Similarly, NMR technique is only limited to relatively small soluble proteins and is not suited for the non-polar proteins embedded in cell membranes. On the other hand, cryo-EM enables the study of larger proteins, membrane-bound receptors, or biomolecular complexes.

Cryo-EM is extensively being used in biochemistry to study the structure, function, and interaction of biomolecules. The infectious agents, such as viruses, can be identified and studied using cryo-EM. For example, during the Zika virus outbreak in Brazil, cryo-EM was utilized to create a 3D image of the virus structure so that the potential anti-viral drug targets could be identified.

タグ
Cryo electron MicroscopyElectron MicroscopyBiological SamplesNative StateArtifactsHigh resolution ImagesFrozen SamplesGentler Electron BeamsJacques DubochetJoachim FrankRichard HendersonNobel Prize In ChemistryX ray DiffractionNuclear Magnetic ResonanceBiomoleculesCrystallization ProcessMolecular MovementsInteractionsMembrane bound ReceptorsBiochemistryInfectious AgentsZika Virus

章から 33:

article

Now Playing

33.16 : Cryo-electron Microscopy

細胞、組織、分子の視覚化

3.1K 閲覧数

article

33.1 : 光学顕微鏡による生体サンプルのイメージング

細胞、組織、分子の視覚化

4.0K 閲覧数

article

33.2 : 位相コントラストおよび微分干渉コントラスト顕微鏡

細胞、組織、分子の視覚化

6.4K 閲覧数

article

33.3 : 固定と切片化

細胞、組織、分子の視覚化

3.9K 閲覧数

article

33.4 : 免疫蛍光顕微鏡

細胞、組織、分子の視覚化

8.5K 閲覧数

article

33.5 : 免疫細胞化学および免疫組織化学

細胞、組織、分子の視覚化

8.8K 閲覧数

article

33.6 : 共焦点蛍光顕微鏡

細胞、組織、分子の視覚化

11.2K 閲覧数

article

33.7 : 生細胞におけるタンパク質動態

細胞、組織、分子の視覚化

2.0K 閲覧数

article

33.8 : 全反射蛍光顕微鏡

細胞、組織、分子の視覚化

5.4K 閲覧数

article

33.9 : 原子間力顕微鏡

細胞、組織、分子の視覚化

3.1K 閲覧数

article

33.10 : 超解像蛍光顕微鏡

細胞、組織、分子の視覚化

6.5K 閲覧数

article

33.11 : 電子顕微鏡の概要

細胞、組織、分子の視覚化

7.4K 閲覧数

article

33.12 : 走査型電子顕微鏡

細胞、組織、分子の視覚化

3.3K 閲覧数

article

33.13 : 透過型電子顕微鏡

細胞、組織、分子の視覚化

4.6K 閲覧数

article

33.14 : 電子顕微鏡用試料の調製

細胞、組織、分子の視覚化

5.1K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved